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Abstract 

Symmetry is not an inherent characteristic of mathematical proofs; instead, it is a 
property that arbitrarily manifests in different modes of presentation. This arbitrariness 
leads to the conclusion that symmetry cannot be part of the defining or essential 
properties that characterize proofs. Consequently, contrary to some authors’ claims, 
symmetry does not significantly contribute to the validity, accuracy, or soundness of 
mathematical proofs. What is more, it does not even play any critical role in heuristic 
aspects such as explanatory power. The examples developed in this paper constitute 
compelling evidence supporting these claims. 

Keywords: philosophy of mathematics, mathematical practice, explanation in 
mathematics, mathematical proof. 

 

Resumen 

La simetría no es una característica inherente a las demostraciones matemáticas; en cambio, 
es una propiedad que se manifiesta arbitrariamente en sus diferentes modos de presentación. 
Esta arbitrariedad lleva a la conclusión de que la simetría no puede ser parte de las propiedades 
definitorias o esenciales que caracterizan las demostraciones. Por consiguiente, en contra de 
las afirmaciones de algunos autores, la simetría no contribuye significativamente a la validez, 
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exactitud o solidez de las demostraciones matemáticas. Incluso más, ni siquiera juega ningún 
papel crítico en aspectos heurísticos como el poder explicativo. Los ejemplos desarrollados en 
este trabajo constituyen evidencia convincente que respalda estas afirmaciones. 

Palabras clave: filosofía de las matemáticas, práctica matemática, explicación matemática, 
demostración matemática. 

 

1. Introduction 

The conception of mathematical proof has undergone a significant evolution from its 
formal inception with the ancient Greeks to the present day, reflecting broader shifts in 
epistemological frameworks and mathematical rigor. Initially, the ancient Greeks, 
particularly through the work of Euclid, established the foundation of deductive 
reasoning in mathematics, emphasizing axioms, propositions, and the necessity of logical 
coherence in proofs. Later, the 19th century witnessed a critical transformation in the 
understanding of proof, driven by the emergence of non-Euclidean geometries and the 
formalization of mathematical analysis, which led to a more rigorous scrutiny of 
foundations and the development of formal proof systems. In contemporary times, the 
advent of computer-assisted proofs and the exploration of proof in mathematical logic 
and category theory continue to challenge and refine our understanding of what 
constitutes a mathematical proof. 

The exploration of the possibility of a universal and apprehensible notion of 
mathematical proof has been addressed by Russell, Gödel, Lakatos, and other of the most 
influential philosophers of mathematics. Yet, the question remains elusive due to the 
complex interplay of logical rigor, intuitive understanding, and mathematical practice. 
Attempts to characterize a mathematical proof have historically oscillated between the 
Hilbertian formalistic rigor and conceptual intuition, reflecting broader philosophical 
tensions between the objective structure of mathematical reality and the subjective 
processes of mathematical discovery (as illustrated by Brouwer’s philosophical work) and 
justification, which motivated Frege’s program. 

Building on the diverse insights yielded by foundational projects, contemporary 
philosophy of mathematics approaches the concept of mathematical proof as a more 
multifaceted construct, integrating formal logical structures, intuitive understanding, and 
social validation within the mathematical community. This pluralistic perspective recognizes 
that mathematical proofs transcend mere formal artifacts, being intricately woven into the 
fabric of mathematical practices, conventions, and epistemic values. Such a view renders the 
pursuit of a singular, well-defined notion of proof both practically and philosophically 
ambitious, challenging the feasibility of maintaining a uniform definition. Despite this, many 
philosophers and mathematicians persist, to varying degrees, in the belief that properties 
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generalizable across all mathematical proofs exist. In this context, the present paper 
contributes to the view that the characteristics of mathematical proofs are not readily 
generalizable, thereby underscoring the implausibility of achieving a moderately satisfactory 
characterization. 

For instance, Mancosu (1996) underscores the importance of clarity, rigor, and logical 
coherence as fundamental properties inherent to the nature of mathematical proofs, 
irrespective of their specific mathematical domain or the era in which they were conceived. 
He articulates how the evolution of mathematical practice has continuously reaffirmed the 
necessity for proofs to adhere to stringent criteria of deductive reasoning, thereby 
highlighting the universality of these properties in ensuring the validity and reliability of 
mathematical arguments. Although this is a historical perspective and takes into account 
mathematical practice, it still excludes instances of proof that, in principle, we consider 
legitimate. Consider, for example, a physical proof of the Pythagorean theorem. These proofs 
are standard in science museums. Are these proofs less legit because instead of convincing 
professional mathematicians, they exhibit the statements’ truth to the general public? 

The compulsion to achieve a characterization of the mathematical proof has led to 
different attempts to generalize properties that contribute to the sense of proofs in 
mathematics or at least of certain subclasses such as explanatory proofs. In line with this idea, 
I will focus on the property of symmetry, which has been used by Lange (2017) as a feature 
that endows mathematical proofs with explanatory power. That is, symmetry would be a 
characterizing property of explanatory proofs. The central objective in this paper is to show 
through a variety of examples that symmetry is a property that can vary arbitrarily not only 
among different mathematical proofs but also among what we would intuitively consider to 
be different modes of presentation of the same proof. Symmetry is not an intrinsic property 
of mathematical proofs. It is rather a property that may or may not be in a particular 
presentation. Certainly, what is at stake here is the mere idea of mathematical proof as an 
individual object in which specific characteristics can be identified. 

 
2. Symmetry 

Lange (2017) articulates the significance of symmetry within the domain of mathematical 
explanations, positing that the most compelling explanations are those that can account for 
observed symmetries in the outcomes by harnessing symmetrical features inherent in the 
initial conditions of the problem. Among the instances he explores is d’Alembert’s theorem 
– an illustration of explanation through subsumption under a theorem – which posits that 
for any polynomial equation of nth degree with solely real coefficients, non-real roots 
invariably occur in conjugate pairs. In his book, Because Without Cause, Lange critiques 
algebraic demonstrations that “merely manipulate symbols” to arrive at this conclusion as 
lacking explanatory depth, failing to unveil the underlying rationale, which he identifies as 
the invariance of the axioms of complex arithmetic under the interchange of i with -i. He 
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characterizes such algebraic proofs as “magical” and devoid of explanatory power. In a 
previous analysis (Bueno and Vivanco, 2019), we challenge this perspective by offering an 
alternative elucidation of the same proof, thereby dispelling its perceived magical quality. 
Further extending his discussion to a geometrical example, Lange underscores similar 
considerations. The subsequent sections of this paper are devoted to presenting three distinct 
proofs, scrutinized for their explanatory capacity, particularly through the lens of symmetry. 
The discussion culminates in an examination of a proof by induction, leveraging Lange’s 
criterion to argue for its potential explanatory value — a stance that contrasts with Lange’s 
earlier position, which characterizes induction proofs as inherently non-explanatory (Lange, 
2009). This exploration aims to broaden the understanding of what constitutes an 
explanatory proof, highlighting the contingent role of symmetry in achieving such 
explanatory depth. 

 

3. Two Crossed Lines Inscribed in a Trapezoid 

Even if we admit that, within the realm of algebraic proofs, the manifestation of symmetry 
is intrinsically contingent upon the interpretation of the given elements, we still can hold 
that in geometry, symmetry is a property almost axiomatically self-evident. This distinction 
is explored through an example analyzed by Marc Lange (Lange, 2017, pp. 245–249), 
wherein he endeavors to substantiate his argument concerning the explanatory power of 
mathematical proofs as derived from their symmetrical properties. According to Lange, the 
geometric proposition in question serves as a case study for a mathematical phenomenon that 
admits of various proofs, among which one is deemed explanatory by virtue of its capacity to 
mirror the symmetry from the proof onto the theorem itself. In contrast, other proofs are 
categorized as non-explanatory, owing to their failure to demonstrate the said symmetry. 
Through this analysis, Lange aims to illustrate the significant role that symmetry plays in 
distinguishing explanatory proofs within the mathematical discourse, thereby advancing a 
nuanced understanding of the criteria that underpin the explanatory nature of mathematical 
demonstrations. In what follows, I will analyze the proofs provided, making it evident that, 
due to the arbitrariness and relativity of symmetry, the three proofs should be considered 
explanatory according to Lange’s criterion. 
 

3.1 Theorem 

If ABCD is an isosceles trapezoid; the segment 𝐴𝐵#### is parallel to the segment of line 𝐶𝐷#### and 
𝐴𝐷#### = 𝐵𝐶####, such that 𝐴𝑀##### = 𝐵𝐾####, and 𝑁𝐷#### = 𝐿𝐶####, then 𝑀𝐿#### = 𝐾𝑁#####. 
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Figure 1. Trapezoid. 

The result under consideration exemplifies the quintessential characteristics of early Greek 
geometry, a mathematical tradition fundamentally anchored in the exploration of lines, 
points, and their interrelations, typically elucidated through measurements facilitated by the 
utilization of a ruler and compass. In concluding his examination of this exemplar, Lange 
furnishes a demonstration that, in his estimation, adequately fulfills the criteria of symmetry 
he posits as essential for explanatory value. It is within this context that we proceed to a 
meticulous analysis of those proofs deemed non-explanatory by Lange, aiming to delineate 
the attributes that distinguish them from their explanatory counterparts in accordance with 
Lange’s theoretical framework. 

 

3.2 The Cartesian Proof 

The following demonstration has been characterized by Lange as a brute- force proof of 
2.2, a designation that merits attention within the context of analytic (Cartesian) geometry, 
which is seldom invoked for such purposes. The primary utility of this theoretical framework 
lies in its provision of parameters that facilitate discourse on distances and, by extension, on 
lengths. Lange’s delineation of the brute-force proof is articulated as follows: 

Let D’s coordinates be (0, 0), C’s be (0, c), A’s be (a, s), and 
B’s be (b, s), and then solve algebraically for the two distances 
ML and KN, showing that they are equal. [p.245] 

In the ensuing discourse, an elaborated rendition of this proof will be presented, with the 
intention of unveiling the symmetry that underpins the transition from proof to theorem. 

Should this endeavor prove successful, it would thereby be demonstrated, in accordance 
with Lange’s criterion, that this instance does not constitute a non-explanatory proof. This 
analysis aims not only to elucidate the potential of finding symmetry in the demonstration 
but also to engage with Lange’s broader theoretical considerations regarding the explanatory 
capacity of mathematical proofs. 
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Proof. 

Figure 2. Cartesian proof. 

The task at hand necessitates the translation of geometric concepts into a Cartesian 
framework. Let’s use D to denote the origin (0, 0) and C to denote a point of the 
form (0, c), with 𝑐 ∈ ℝ  , thereby predetermining the plane’s region accommodating 
the trapezoid (given D and C’s coordinates, the trapezoid’s base is aligned along the 
y-axis, initiating from the origin, as depicted in Figure 2). The result displayed in 2.2 
has four hypotheses: 

1 We have that 𝐴𝐵####||𝐶𝐷####. Given Lange's placement of the trapezoid's base 𝐶𝐷#### along 
the y-axis, asserting 𝐴𝐵####||𝐶𝐷####essentially equates to A and B sharing identical x-
coordinates (thus, the line through A and B runs perpendicular to the x-axis and 
parallel to the y-axis). Consequently, A adopts coordinates (s,a) and B, (s,b), where s 
is any real number, and a and b are defined by the ensuing hypothesis. 

2 We have that 𝐷𝐴#### = 𝐶𝐵####. The Cartesian plane enables discussions around distances, 
equating the identity 𝐷𝐴#### = 𝐶𝐵#### to d(D,A) = d(C,B), or √𝑎! + 𝑏! =
3𝑏! + (𝑠 − 𝑐)!. The symmetry emerges from the trapezoid's inherent identities 
(e.g., |a| = |c-b|), a key aspect of the sought-after symmetry between the proof and the 
result, which will become clearer as the proof progresses. 

3 We have that 𝐴𝑀##### = 𝐵𝐾####. With M represented as (p,m) such that |𝑝| 	≤ 	 |𝑠| and 
|𝑚| 	≤ 	 |𝑎|, and similarly, K as (p,k) with |𝑏| 	≤ 	 |𝑘|, the equality (symmetry) of 
segments translates into an equivalence of distances: 3(𝑎 −𝑚)! + 𝑠 − 𝑝! =
3(𝑘 − 𝑏)! + (𝑠 − 𝑝)!. 

4 We have that 𝑁𝐷#### = 𝐿𝐶####. Analogous to the previous hypothesis, N is (q,n) where 
|𝑞| 	≤ 	 |𝑠| and |𝑛| 	≤ 	 |𝑎|, while L is (q,l) with |𝑏| 	≤ 	 |𝑙|. This implies d(N,D) = 
d(L,C), or 3𝑛! + 𝑞! = 3(𝑎 −𝑚)! + (𝑠 − 𝑝)!. 
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The objective is to demonstrate that 𝑀𝐿#### = 𝐾𝑁#####. In Cartesian jargon, this is to proof that 
d(M,L) = d(N,K). 

Observing that the trapezoid ABCD is inscribed within the right parallelogram DCD'C' 
(where C' = (s,c) and D' = (s,0)), whose base is 𝐷𝐶#### and height is |s|, and recognizing that 
DCD'C' forms an isosceles shape, it follows that △ 𝐴𝐷𝐷′ and △ 𝐵𝐶𝐶′ are congruent, 
preserving the corresponding symmetry (verified via the side, angle, side criterion: 𝐷𝐷′##### =
𝐶𝐶′#####; ∡𝐷′𝐷𝐴 = ∡𝐶′𝐶𝐵 ; and 𝐷𝐴#### = 𝐶𝐵####). Additional observations further highlight the 
symmetry integral to the proof and its results: 

i. The equivalence d(K,E) = d(M,F) emerges from the congruence of  △ 𝐾𝐶𝐸	and  △
𝑀𝐷𝐹	substantiated through the angle-side-angle criterion of congruence. This 
congruence is evidenced by the equality of angles ∡MDF and ∡𝐾𝐶𝐸, which, in turn, 
is justified by the equivalences ∡𝐹𝐷𝑀 = ∡𝐷′𝐷𝐴 and ∡𝐸𝐶𝐾 = ∡𝐶′𝐶𝐵 . The 
transitivity of angle identity ensures that ∡𝑀𝐷𝐹 = ∡𝐾𝐶𝐸. Further analysis reveals 
that 𝐷𝑀##### = 𝐶𝐾####, a conclusion drawn from the isosceles nature of the trapezoid which 
dictates 𝐷𝐴#### = 𝐶𝐵####, and by extension, from hypothesis 3, that 𝐴𝑀##### = 𝐵𝐾####. Thus, the 
subtraction of 𝐴𝑀##### from 𝐷𝐴#### and 𝐵𝐾#### from 𝐶𝐵#### respectively yields 𝐷𝑀##### and 𝐶𝐾####, 
confirming their equality. Additionally, the parallelism of 𝐸𝐾#### with 𝐶′𝐵##### aligns ∡𝐸𝐾𝐶 
with ∡𝐶′𝐵𝐶, just as ∡𝐹𝑀𝐷 corresponds with ∡𝐷′𝐴𝐷, the congruence of △ 𝐴𝐷𝐷′  
with △ 𝐵𝐶𝐶′ reinforcing the angle equivalences. These observations collectively 
affirm the congruence of △ 𝐾𝐶𝐸  with △𝑀𝐷𝐹, thereby establishing the equality of 
distances d(K,E) and d(M,F) as a direct consequence of the demonstrated 
symmetrical relations and congruences. 

ii. Also, 𝑑(𝐿, 𝐺) = 𝑑(𝑁,𝐻). Analogously, the identity 𝐿𝐺#### = 𝑁𝐻##### can be demonstrated. 

These symmetries pervade the proof and resonate with the final result. The algebraic 
expressions — potentially deemed ‘magical’ — yielding the conclusion stem from 
observations i. and ii. as follows: 

For i., |c − k| = |c − (c − m)| = |m|, and for ii., |c − l| = |c − (c − n)| = |n|. Subsequently, |c − 
k + n| = |c − l + m|, leading to |l − m| = |k – n |, and (𝑙 − 𝑚)! = (𝑘 − 𝑛)!. Thus, 
3(𝑞 − 𝑝)! + (𝑙 − 𝑚)!	 = 3(𝑞 − 𝑝)! + (𝑘 − 𝑛)!, demonstrating 𝑑(𝑀, 𝐿) = 𝑑(𝐾,𝑁) 
or, in terms of segments, that 𝑀𝐿#### = 𝐾𝑁##### 

 
Unsurprisingly, the symmetry in the Cartesian proof is not very different from the 

symmetry that Lang points out in the original proof. Symmetry could be a property inherent 
to the result 2.2 itself, but if this is the case, it seems highly plausible that any proof, regardless 
of its explanatory power, exhibits such symmetry. In this sense, symmetry would not 
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contribute at all to the distinction between explanatory and non-explanatory mathematical 
proofs. 

 

3.3 The Euclidean Proof 

An additional instance that would elicit critique from Lang for its failure to harness the 
inherent symmetry present within the explanandum of 2.2, as opposed to the symmetry 
exploited in the original demonstration, pertains to the Euclidean proof. The proof unfolds 
as follows: 

 

Proof. 

Figure 3. Euclidean proof. 

Initiate by constructing a line from point N perpendicular to segment 𝐶𝐷####, denoting their 
point of intersection as P. Similarly, construct line segment	𝐿𝑆###. Analyzing triangles △ 𝐷𝑁𝑃 
and △ 𝐶𝐿𝑆, we observe that ∡𝑃𝐷𝑁 = ∡𝑆𝐶𝐿 due to the trapezoid's isosceles nature, and 
𝑑(𝑁, 𝐷) = 	𝑑(𝐿, 𝐶) as given. Furthermore, the corresponding angles ∡𝐷𝑃𝑁	and ∡𝐶𝐿𝑆 are 
both right angles. Consequently, by employing the angle-side-angle criterion, we establish 
that △ 𝐷𝑁𝑃 is congruent to △ 𝐶𝐿𝑆. It is pertinent to note that these triangles are not merely 
congruent but also exhibit symmetry relative to the perpendicular bisector intersecting point 
O (figure 3). As a result, side 	𝑁𝑃#### is equal in length to 	𝐿𝑆###	, given their correspondence in 
the congruent triangles, and are parallel by virtue of their perpendicular orientation to the 
same line. This congruence and parallelism of opposite sides validate that quadrilateral PNLS 
forms a parallelogram, thus asserting that segment 	𝑁𝐿#### is parallel to 	𝐷𝐶####.	Employing a similar 
rationale with additional auxiliary lines, we deduce that	𝐴𝐵####	is parallel to 	𝑀𝐾#####. 

This parallelism between 	𝑀𝐾#####	and 	𝑁𝐿####		in conjunction with their shared parallelism to 
lines 	𝐴𝐵#### and 	𝐷𝐶#### respectively, confirms the trapezoidal configuration of MKLN. Given that 
	𝑀𝑁##### = 𝐴𝐷#### − 𝐴𝑀##### − 𝑁𝐷#### and 	𝐾𝐿#### = 𝐵𝐶#### − 𝐵𝐾#### − 𝐿𝐶####, coupled with the equalities 	𝐴𝑀##### =
𝐵𝐾####, 𝐴𝐷#### = 𝐵𝐶####, and 	𝑁𝐷#### = 𝐿𝐶####, it follows that 	𝑀𝑁##### is equal in length to 	𝐾𝐿####. The 
congruence of corresponding angles ∡𝐾𝐿𝑁 = ∡𝐿𝐶𝑃 and ∡𝐿𝐶𝑆 = ∡𝑁𝐷𝑃, alongside the 
equality ∡𝑁𝐷𝑆 = ∡𝑀𝑁𝐿, further corroborates that ∡𝐾𝐿𝑁 = ∡𝑀𝑁𝐿. This analysis, 
informed significantly by the symmetrical properties underlying the theorem, leads to the 
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conclusion that triangles △𝑀𝑁𝐿 and △ 𝐾𝐿𝑁 are congruent by the side-angle-side criterion. 
Consequently, their corresponding sides 	𝑀𝐿#### and 	𝐾𝑁##### are equidistant. 

As can be observed, this proof explores the properties of a geometric figure, specifically a 
trapezoid, by drawing on the principles of congruence and symmetry. It begins by 
constructing perpendicular lines from certain points to the sides of the trapezoid, creating 
new triangles within the figure. By analyzing these triangles and their properties -- such as 
equal angles and sides -- the proof demonstrates that they are congruent to each other. The 
key step involves showing that certain segments and angles within the trapezoid and the 
constructed triangles are equal and parallel, leading to the formation of a parallelogram 
within the larger trapezoid. This parallelogram’s properties help establish that two opposite 
sides of a newly formed smaller trapezoid are parallel and equal in length. Ultimately, the 
proof relies on a series of geometric constructions and the properties of congruent triangles 
(symmetries included) to show that certain lines within the trapezoid are parallel and equal, 
affirming the symmetry and specific equalities within the geometric figure. This methodical 
approach, grounded in basic geometric principles, elegantly demonstrates the relationships 
between various parts of the trapezoid and its internal structures. Nevertheless, according to 
Lange, the proof does not fit the bill: 

The construction is artificial because the proof using it seems 
obliged to go to elaborate lengths–all because it fails to exploit the 
figure’s striking feature: its symmetry with respect to the line 
between the midpoints of the bases. [p. 246] 

Indeed, the proof in question effectively leverages the symmetry under discussion, a 
characteristic equally exploited by the Cartesian proof. It is precisely through the invocation 
of this symmetry, alongside additional symmetrical considerations, that numerous triangle 
congruences are deducible. Ultimately, the symmetry central to this discourse emerges 
inherently from the trapezoid’s isosceles nature. Consequently, the formulation of a proof 
for theorem 2.2 indispensably presupposes this hypothesis, underscoring the intrinsic reliance 
on the trapezoid’s defining isosceles property to establish the proof’s foundational arguments. 

Upon examination, we can see no substantive divergence between the “original,” the 
Euclidean and the Cartesian methodologies of proof. The underpinnings required to 
construct these proofs are fundamentally identical, merely articulated within disparate 
frameworks, with symmetry being salient in all instances. Contrary to Lange’s insinuations, 
there exists no contrivance within the Euclidean approach. The essence of the result – 
concerning lines, points, and their interrelations – necessitates that any proof must engage 
with these elements to elucidate the observed phenomenon. Given that the phenomenon 
inherently embodies a symmetrical aspect, the presence of symmetry within any proof is 
inevitable, manifesting to varying degrees. The presentation’s granularity enhances the 
visibility of the result’s defining characteristics, including the integral symmetrical features. 
As we will see below, examples of this kind can be extended to different areas of mathematics. 
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—	

4. The Power Set Cardinality 

Beyond the examples previously delineated, it is instructive to explore mathematical 
proofs beyond the realms of algebra and geometry, where the symmetry previously discussed 
manifests as a characteristic feature of the proof, contributing to its explanatory power. This 
discussion extends to include various demonstrations of the theorem articulating the formula 
for calculating the cardinality of the power set. Of particular interest within this context is a 
proof employing mathematical induction. Following Lange (2017) criterion, if in a 
mathematical proof, the observed symmetry can be traced from the proof to the theorem 
itself, it should be explanatory. This principle also covers areas of mathematics such as set 
theory and different types of mathematical proof, including inductions. Nonetheless, it is 
noteworthy that numerous philosophers, including Lange (2009), have classified induction 
proofs as quintessential examples of non-explanatory proofs, presenting an intriguing 
paradox within the philosophical discourse on the nature of mathematical explanation. 

We hereby elucidate a mathematical theorem concerning the cardinality of the power set, 
positing that the cardinality of the power set of a given set X, possessing cardinality n, is 
precisely double that of the power set of another set Y, whose cardinality is 𝑛 − 1. This 
observation may be interpreted as reflecting a symmetry, articulated mathematically as 
follows: 

|P(X)| = |P(Y )| + |P(Y )| 

In the context of assessing Lange’s theoretical framework regarding the explanatory nature 
of mathematical proofs, we shall examine various demonstrations of this theorem to discern 
how they manifest the aforementioned symmetry (or how different presentations of the same 
proof might reveal such symmetry). This exploration aims to contribute to the ongoing 
discourse on the criteria that imbue a proof with its explanatory power, particularly with 
respect to symmetry as a distinctive element between proofs with different explanatory value. 

 

Theorem 4.1 Consider a set X possessing a cardinality of n. The cardinality of the power set of X 
(denoted as|𝑃(𝑋)|, and which aggregates the cardinalities of all subsets of X) is demonstrably twice 
the cardinality of the power set of any set comprising 𝑛 − 1 elements. This relationship is 
mathematically articulated as follows: 

|𝑃(𝑋)| = QR
𝑛
𝑘S

"

#$%

=QT
𝑛 − 1
𝑘 U

"&'

#$%

+QT
𝑛 − 1
𝑘 U

"&'

#$%

 

This equation elegantly captures a fundamental symmetry in the combinatorial structure 
of sets and their power sets, offering a profound insight into the growth patterns of such 
cardinalities as one progresses from a set of cardinality 𝑛 − 1 to a set of cardinality n. This 
duality may be interpreted as the intrinsic symmetry present within the combinatorial 
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·	

landscape, providing a clear illustration of the doubling effect observed in the transition 
between these cardinalities. 

To substantiate the aforementioned theorem, our discourse shall endeavor to demonstrate 
the following mathematical identity: 

QR
𝑛
𝑘S

"

#$%

= 2" 

This identity is relevant for our purposes, as its confirmation underpins the result 
delineated in the cardinality theorem 2.6. Specifically, if the above equation holds true, it 
logically follows that 2" = 2 ∙ 2"&' = 2"&' + 2"&', thereby validating the theorem’s 
assertion regarding the relationship between the cardinalities of power sets for sets of 
cardinality n and 𝑛 − 1. This proof, therefore, serves as the foundational pillar upon which 
the theorem’s validity rests, illustrating the exponential growth pattern encapsulated within 
the symmetrical structure of power sets. 

Should Lange’s demarcation between explanatory and non-explanatory proofs hold 
veracity, one might anticipate that for a given theorem, its demonstrations can be categorized 
distinctly as explanatory or otherwise. This expectation arises despite Lange’s omission to 
furnish a comprehensive framework for the evaluation of all conceivable proofs. 

This discourse endeavors to elucidate this premise through the exposition of two proofs 
pertaining to Theorem 2.6. The initial proof is posited as intuitively explanatory, particularly 
within the confines of Lange’s definition. Conversely, the subsequent proof employs 
induction, a method often relegated to the non-explanatory domain, as delineated by (Lange, 
2009). The objective here is to substantiate that, under the auspices of Lange’s criteria for 
explanatory merit, the inductive proof of Theorem 2.6 not only qualifies as explanatory but 
does so with parity to the proof deemed more intuitively so. 

Proof I (Intuitively Explanatory). Consider the array known as Pascal’s triangle, composed 
of binomial coefficients, presented thus: 

n = 0 1 

n = 1 1 1 

n = 2 1 2 1 

n = 3 1 3 3 1 

n = 4 1 4 6 4 1 

n = 5 1 5 10 10 5 1 

n = 6 1 6 15 20 15 6 1 
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The first documented manifestation of a binomial coefficient triangle is traced to the tenth 
century, articulated within the exegeses of the Chandas Shastra, an archaic Indian treatise on 
Sanskrit prosody, authored by Pingala circa 200 B.C.1 This work laid the foundational 
understanding of binomial coefficients that would later be expanded upon by Blaise Pascal. 
Pascal’s contributions were not merely iterative but transformative, introducing a plethora of 
heretofore unrecorded applications for the numbers constituting the triangle. His seminal 
work, the Traité du triangle arithmétique (1653), represents perhaps the first mathematical 
discourse explicitly dedicated to the arithmetic triangle, delineating its utility and theoretical 
underpinnings in a comprehensive manner. 

The structure of Pascal’s triangle elucidates the enumeration of subsets of a given 
cardinality for a set X of cardinality n. 

1 For instance, for |X| = 0, the initial row communicates the existence of a singular 
subset of cardinality 0, namely ∅. Extending this logic: 

2 For X = {a} with |X| = 1, the triangle’s second row signifies X possesses one subset of 
cardinality 0 (∅), and one of cardinality 1 ({a}). Hence, the power set of X 
encompasses |P (X)| = 1 + 1 = 2 subsets. 

3 For X = {a, b} with |X| = 2, it’s conveyed that X comprises one subset of cardinality 
0, two of cardinality 1 ({a} and {b}), and one of cardinality 2. Thus, |P (X)| = 1 + 2 + 
1 = 4. 

4 Continuing to 𝑋 = {𝑎, 𝑏, 𝑐}, where 𝑋 = |3|, it’s denoted that X includes one subset 
of cardinality 0, three of cardinality 1, three of cardinality 2 ({𝑎, 𝑏}, {𝑎, 𝑐}, and 
{𝑏, 𝑐}), and one of cardinality 3 ({𝑎, 𝑏, 𝑐}). Consequently, |𝑃(𝑋)| = 1 + 3 + 3 +
1 = 8. 

5 ⋯  

In the framework of polynomial multiplication, the figures in each row of the triangle 
correspond to the coefficients arising from the expansion of the binomial theorem, where 
‘^"#_’ denotes the count of subsets comprising k elements from a set of cardinality n. This 
interpretation renders the triangle as follows: 

 

 

 

 

 

 
1 (Edwards, 2002) 
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Newton’s binomial theorem posits the general expression as: 

R
𝑛
0S 𝑎

"𝑏% + R
𝑛
1S𝑎

"&'𝑏' +⋯+ R
𝑛

𝑛 − 1S 𝑎
'𝑏"&' + R

𝑛
𝑛S𝑎

%𝑏" = (𝑎 + 𝑏)" 

 

Given a set X of cardinality n, the aggregate cardinality of its subsets, or the cardinality of 
its power set, can be articulated as: 

R
𝑛
0S ∙ 1 + R

𝑛
1S ∙ 1 + ⋯+ R

𝑛
𝑛 − 1S ∙ 1 + R

𝑛
𝑛S ∙ 1 =

|𝑃(𝑋)| 

 

Employing the binomial theorem, justified by polynomial multiplication principles and 
Pascal’s triangle, allows for representing each coefficient 1 as 1 · 1. This yields: 

 

R
𝑛
0S (1

" ∙ 1%) + R
𝑛
1S (1

"&' ∙ 1') + ⋯+ R
𝑛

𝑛 − 1S (1
' ∙ 1"&') + R

𝑛
𝑛S (1

% ∙ 1") = (1 + 1)" 

 

Conclusively, 

 

QR
𝑛
𝑘S

"

#$%

= 2" 

 
 

The structure of this proof is fundamentally underpinned by what can be interpreted as 
intrinsic symmetry, a characteristic that extends beyond mere aesthetic appeal to touch upon 
foundational principles of mathematical reasoning. Notwithstanding, a pertinent query arises 
concerning the breadth of this explanation’s generality and its sufficiency to constitute a proof 
in the most rigorous sense. Setting aside this legitimate concern for the moment, it is 
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imperative to highlight an observable symmetry that permeates the transition from proof to 
theorem, thereby embodying the very essence of mathematical harmony. This symmetry is 
not merely coincidental but reflects a deeper congruence between the structure of 
mathematical arguments and the universal truths they aim to unveil. In aligning with Lange’s 
desideratum, the proof not only adheres to the established criteria for explanatory power but 
also leverages this symmetry to elucidate the theorem’s underlying principles, thereby 
reinforcing the proof’s validity and enhancing its explanatory value. 

The apparent efficacy of Lange’s theoretical framework in this context is, upon closer 
examination, not serendipitous but rather a consequence of deliberate methodological 
choices. Specifically, the selection of a test case for analysis was guided by the criterion of 
showcasing a particular symmetry, integral to both the theorem under consideration and its 
proof. The highlighted symmetry is not fortuitous, but it is not an essential part of the result 
either. It is the product of an arbitrary process, orchestrated and designed to accentuate the 
consonance between mathematical theory and its practical demonstration. 

 

5. Proofs by Induction 

In philosophy of mathematics, several authors have criticized proofs by induction for their 
supposed lack of explanatory power. Regarding this point, in earlier versions of his work, 
Marc Lange (2014) has articulated specific arguments against the explanatory value of 
inductive proofs. Lange argues that proofs by induction often fail to provide understanding 
because they do not reveal the underlying reasons for the mathematical phenomenon in 
question. He contends that while inductive proofs can show that a proposition holds for all 
natural numbers, they often do so by relying on the structure of the natural numbers 
themselves, rather than illuminating the deeper mathematical truths underlying the 
proposition. Thus, these proofs can verify the truth of a statement without offering insight 
into why it is true across all cases. 

There are several criticisms of inductive proofs. One of them is that they lack a 
mechanistic explanation, which means that it is unclear how one step leads to another, and 
how this elucidates the mathematical structure or phenomenon (Lange, 2013). Another 
perspective is that inductive proofs tend to focus on establishing the generality of a 
proposition rather than providing specific instances that could offer insight into the workings 
of the theorem (Baker, 2005). This generality is seen as coming at the expense of explanatory 
depth. Lastly, some critics argue that the explanatory power of inductive proofs is diminished 
when they heavily rely on the axiom of induction. They consider this reliance a formal trick 
rather than a genuine explanation of the phenomenon (Fehige, 2019). 

Notwithstanding the aforementioned critiques, the crux of the matter resides in the 
realization that proofs by induction, conventionally categorized as non-explanatory, can 
indeed be structured to unveil characteristics interpretable as symmetry. Should this assertion 
hold, we encounter a paradigm wherein proofs, ostensibly non-explanatory by Lange’s 
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criteria, nonetheless fulfill his stipulation of manifesting a symmetry traceable from the proof 
to the theorem itself. This revelation contributes substantively to the burgeoning corpus of 
evidence advocating for symmetry as a deliberately chosen attribute within the exposition of 
mathematical proofs. Such an insight not only challenges prevailing notions regarding the 
nature of explanatory proofs but also underscores the versatility and depth of symmetry, 
which, rather than a conceptual lens through which mathematical truths can be discerned 
and articulated more clearly and coherence, is an inherent property of mathematical results, 
whose natural essence is the occurrence of patterns. 

 

Proof. (Induction 1) 

The objective of this proof is to establish, via mathematical induction, the identity: 

 

QR
𝑛
𝑘S

"

#$%

= 2" 

 

Commencing with a set X of cardinality 1, we select n = 1 as the base case for induction 
(notably, the base case n = 0 is equally viable): 

 

QT
1
𝑘U

'

#$%

= T
1
0U + T

1
1U =

1!
0! ∙ 1! +

1!
1! ∙ 0! = 1 + 1 = 2' 

 

Assuming the induction hypothesis: 

 

QR
𝑛
𝑘S

"

#$%

=Q
𝑛!

𝑘! (𝑛 − 𝑘)!

"

#$%

= 2" 

 

our task is to demonstrate that: 

 

QT
𝑛 + 1
𝑘 U

"('

#$%

= Q
𝑛 + 1!

𝑘! ((𝑛 + 1) − 𝑘)!

"('

#$%

= 2"(' = 2 ∙ 2" = 2" + 2" 
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A salient symmetry, observable within the progression from the proof to the theorem, 
underlies our induction step. Specifically, each term from ∑ ^"#_

"
#$%  appears twice in 

∑ ^"('# _
"('
#$% ,  a reflection of the symmetry inherent in Pascal’s triangle.  This observation is 

integral to the induction step, as revealed by the following identity: 

T
𝑛 + 1
𝑘 U = R

𝑛
𝑘 − 1S + R

𝑛
𝑘S , 𝑘 = 0,⋯ , 𝑛. 

 

To elucidate this, let us consider the cases n = 0 and n = 1, followed by a general 
case: 

 

For the general case, the identity can be proven as follows: 

 

Given  ∑ ^"#_
"
#$% = 2" as per the induction hypothesis, and demonstrating that each term 

of this series is duplicated in ∑ ^"('# _
"('
#$% , it follows that: 

 

QT
𝑛 + 1
𝑘 U

"('

#$%

= 2 ∙ 2" = 2"(' 
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The symmetry principle elucidated in the preceding inductive proof (namely the 
observation that each term from ∑ ^"#_

"
#$%  manifests twice in ∑ ^"('# _

"('
#$% ) finds a visual 

corollary within the geometric structure of Pascal’s triangle, as shown below: 

In each sequence delineated by n within Pascal’s triangle, where individual numerals 
epitomize the combinatory counts congruent to their respective positions, a distinctive 
symmetry is observed: each value manifesting in row n is replicated twice in the ensuing row 
n+1. This paper proposes to make salient this symmetry principle through an innovative 
inductive proof, underscoring its persistence from the proof to the mathematical result. 

Given a finite set X, its power set, denoted 𝑃(𝑋), is defined as the union of all subsets  𝐴) 
contained within X, expressed mathematically as 𝑃(𝑋) = ⋃ 𝐴)*"⊂, , with the cardinality of   
𝑃(𝑋) represented by |𝑃(𝑋)| = ∑ |𝐴)|)∈. . The total number of elements within the power 
set of a set X of cardinality n (𝑛 ∈ ℕ) equates to the aggregate of the cardinalities of all 
constituent subsets of X. This encapsulates the summation of the cardinalities spanning all 
subsets of X with cardinalities ranging from 0 to n (acknowledging that |𝐴| ≤ |𝑋| for any 
𝐴 ⊆ 𝑋). Consequently, the equation |𝑃(𝑋)| = ∑ |𝐴)| = ∑ ^"#_

"
#$%)∈.  emerges. 

The endeavor to demonstrate that |𝑃(𝑋)| = 2" serves not only as a proof of this specific 
assertion but also substantiates the broader theorem 2.6, thereby reinforcing the underlying 
symmetry that characterizes both the methodology and the outcomes of this particular way 
to present the result. 

 

Proof. (Induction 2) 

Initiating with the case n = 1 as the foundation for our inductive reasoning, we consider 
a set X constituted as a singleton, specifically 𝑋 = {𝑎}. Then, 𝑃(𝑋) = f∅, {𝑎}g. Therefore, 
𝑃(𝑋) = 2 = 2% + 2% = 2'. (We can see the enclosed symmetry represented by “2% + 2%.”) 
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Consequently, it follows that the cardinality of 𝑃(𝑋) is  2 = 2', effectively establishing our 
base case.  

Progressing to the inductive step, let us postulate that for a set X with cardinality n, where 
𝑛 > 1, the power set 𝑃(𝑋) satisfies the equation |𝑃(𝑋)| = 2"&' + 2"&' = 2". This 
assumption constitutes our induction hypothesis.  

Consider now a set X of cardinality n+1. Selecting an arbitrary element a from X, we 
observe that the set 𝑋\{𝑎}, which denotes the removal of {𝑎} from X has cardinality n. By 
our induction hypothesis, the power set 𝑃(𝑋\{𝑎}) is ascertained to have a cardinality of 2" 

Analyzing the composition of any subset N within the power set 𝑃(𝑋), we discern two 
distinct scenarios: 

(a) N remains unaltered subsequent to the exclusion of {a} from X, denoting that 
𝑎 ∉ 𝑁. 

(b) N is derived from a precursor set 𝑁/ = 𝑁 ∪ {𝑎}, signifying the inclusion of a 
within N. 

 
 

Accounting for all subsets of X through scenarios (a) and (b) facilitates the enumeration 
of all subsets of 𝑋\{𝑎}. Therefore, the cardinality of 𝑃(𝑋) is determined as |𝑃(𝑋\{𝑎})| +
|𝑃(𝑋\{𝑎})| = 2" + 2" = 2"('. This derivation, encapsulating the operationalization of 
𝑃(𝑋) as explicated in conditions (a) and (b), exemplifies the symmetry in the transition from 
proof to theorem, thereby reaffirming the inductive premise. 

It is evident that the two preceding inductions do not constitute two distinct proofs but 
rather two distinct presentations of the same proof. Although a criterion for distinguishing 
mathematical proofs is yet to be established, this conclusion can be readily accepted given 
that both induction 1 and induction 2 necessitate the assumption of precisely the same 
mathematical principles. Is one of these proofs more symmetrical than the other? No, in both 
proofs (or versions of the proof) the symmetrical structure of the sets is the same. It is a 
symmetry of cardinalities, which can be made explicit through notation in different ways. 
The symmetry of the two proofs is contingent on how the proof of 2.6 is presented, and 
therefore, it is subject to the intention of the ‘narrator.’ 

 

6. Final remarks 

The tradition in the philosophy of mathematics has, from various perspectives, sought to 
characterize what constitutes a mathematical proof. Formalist attempts, from ancient Greece 
through the foundational schools and culminating in the current focus on mathematical 
practice, have referenced diverse properties in an effort to delineate the class of arguments 
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that should be legitimized as genuine mathematical proofs. The futile search for such 
properties has led to more modest objectives, such as seeking these characterizations only for 
certain types of mathematical proofs, for example, explanatory proofs. In this regard, various 
properties have been proposed as answers to the question of what makes a proof explanatory. 
This article specifically discusses the property of symmetry as a suggested characteristic 
element of explanatoriness. Previous sections have presented results in algebra (D’Alembert’s 
theorem), geometry (the relationships between segments of a trapezoid) and set theory (the 
cardinality of the power set). Beyond these different areas, various types of proof have been 
explored (some of which are traditionally considered non-explanatory). These proofs 
incorporate algebraic, analytic, geometric, constructive, and inductive methods. The 
combination of these elements and the variety of contexts in which they are applied 
demonstrates that the potential to extract symmetry from proofs is not dependent on a 
specific area or methodology. 

To conclude, it’s important to note that the evidence presented in this work isn’t intended 
to fit into explanatory paradigms. Rather, it serves as a collection of illustrative examples that 
highlight prominent symmetries. The proofs included in this work were carefully crafted to 
encapsulate and reflect the symmetries evident in the results, incorporating analogous 
symmetrical structures at key stages of the proof process. The emergence of symmetry is not 
only a matter of presentation, but also of evaluative subjectivity. Just as we can contemplate 
the geometric symmetry of a triangle, this discourse extends the concept of symmetry to 
include algebraic terms and the sequential steps that underpin a mathematical proof, 
highlighting the flexibility available when we identify symmetry as a defining characteristic 
of a mathematical proof. 
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