Morphological abnormalities in the Striped panray, *Zanobatus schoenleinii* (Zanobatidae) from the coast of Senegal (Eastern Tropical Atlantic)

Anormalidades morfológicas en la raya atigrada, *Zanobatus schoenleinii* (Zanobatidae) de la costa de Senegal (Atlántico Tropical Este)

Christian Capapé¹, Sihem Rafrafi-Nouira², Youssouph Diatta³, Almamy Diaby³ and Christian Reynaud⁴*

¹Laboratoire d’Ichtyologie, Université de Montpellier, case 104, 34095 Montpellier cedex 5, France
²Université de Carthage, Unité de Recherches Exploitation des Milieux Aquatiques, Institut Supérieur de Pêche et d’Aquaculture de Bizerte, BP 15, 7080 Menzel Jemil, Tunisie
³Laboratoire de Biologie Marine, Institut Fondamental d’Afrique Noire, Université Cheikh Anta Diop de Dakar, BP 206, Dakar, Sénégal
⁴Laboratoire Interdisciplinaire en Didactique, Education et Formation, Université de Montpellier, 2 place Marcel Godechot, B.P. 4152, 34092 Montpellier cedex 5, France
*Corresponding author: christian.reynaud@umontpellier.fr

Abstract.- The capture of four abnormal specimens of the Striped panray, *Zanobatus schoenleinii* was reported from shallow coastal waters surrounding the touristic area of Dakar, Republic of Senegal, and among them, some specimens displaying morphological deformities. A specimen exhibited a pectoral non-adherent to the head, a second was tailless, and two specimens displayed scoliosis at level of truncal vertebrae and tail. The abnormalities are described and their causes and consequences herein considered.

Key words: Chondrichthyes, Zanobatidae, *Zanobatus schoenleinii*, pectoral fins, vertebrae, scoliosis, pollution

INTRODUCTION

The Striped panray, *Zanobatus schoenleinii* (Müller & Henle, 1841), is an endemic species known from the eastern tropical Atlantic, where it only occurs between southern Morocco (Lloris & Rucabado 1998), Mauritania (Maurin & Bonnet 1970), Senegal (Diatta et al. 2013), Guinea-Bissau (Sanches 1991) and the Gulf of Guinea (Blache et al. 1970). *Z. schoenleinii* is both commonly and abundantly captured by artisanal fisheries throughout the coast of Senegal (Cadenat 1951, Séret & Opic 1991, Capapé et al. 1995). The species rather inhabits shallow coastal waters, not exceeding 60 m depth (Weigmann 2016). However, according to Stelmann (1981), it can inhabit bottoms until 300 m depth.

Preliminary observations of specimens caught off Oukam, Senegal, showed that size at sexual maturity is reached by males and females at 460 mm and 515 mm in total length (TL), respectively. Additionally, the maximal TL recorded for males and females were 460 mm, and 560 mm TL, respectively (Capapé et al. 1995) in total agreement with Séret & Opic (1991) who noted that maximum TL was 600 mm TL. Females *Z. schoenleinii* are larger than males, displaying a new case of sexual dimorphism in size as it is generally the rule in elasmobranch viviparous species (Mellinger 1989). Some information was also provided about the diet of the species poorly known to date. *Z. schoenleinii* fed all year round on benthic organisms, such crustaceans, mainly amphipods, small bony fishes, molluscs, and worms (Diop 1997).

In the wake of collaboration with experienced fishermen, several *Z. schoenleinii* were collected in shallow coastal waters surrounding the touristic area of Dakar, and among them some of these specimens displayed morphological abnormalities. All collected specimens were transferred at the laboratory for detailed examination, including the abnormal specimens, which are described, and their atypical characteristics commented in the present paper.
MATERIALS AND METHODS

A total of 108 specimens were captured on 25 May 2019 using trammel nets at depth between 5 and 10 m on soft bottom, off Ouakam, an artisanal fishery site located at 5 km north of Dakar, in Cape Verde Peninsula, Republic of Senegal, 14°43’26”N and 17°29’21”W (Fig. 1). Of these 108 specimens, 104 were normal and 4 abnormal. They were measured to the nearest millimeter and weighed to nearest gram. The normal specimens ranged between 253 and 580 mm for total length (TL), 154 and 340 mm for disc width (DW), and weighed between 104 and 1,433 g for total body weight (TBW). All normal specimens were dissected to improve and enlarge studies on reproductive biology and diet of the species. Conversely, a single normal specimen, a large female in perfect morphological condition, was preserved as a reference sample for comparison with the 4 abnormal specimens. These 5 specimens were fixed in 10% buffered formaldehyde, preserved in 75% ethanol and deposited in the Ichthyological Collection of the Institute Supérieur d’Aquaculture et de Pêche of Bizerte (Tunisia), receiving the catalogue numbers, ISPAB-Zan-sch-01 for a normal specimen and from ISPAB-Zan-sch-03 to ISPAB-Zan-sch-06 for abnormal specimens, respectively.

The relation between DW and TBW was used as a complement following Froese et al. (2011), including normal and abnormal specimens to show if these latter were able to develop in the wild similarly to normal specimens. This LWR is \(\text{TBW} = a	ext{DW}^b\), and was converted into its linear regression, expressed in decimal logarithmic co-ordinates and correlations were assessed by least-squares regression as: \(\log \text{TBW} = \log a + b \log \text{DW}\): significance of constant b differences was assessed to the hypothesis of isometric growth if \(b = 3\), positive allometry if \(b > 3\), negative isometry if \(b < 3\) (Pauly 1983). These two latter tests were performed by using logistic model StatView 5.0 (SAS institute Cary, NC).

![Figure 1. Map of the Senegalese coast indicating the capture site of the specimens of Zanobatus schoenleinii (black star).](image)
RESULTS AND DISCUSSION

All specimens were identified as *Zanobatus schoenleinii* due to the following combination of morphological characters: disc sub-circular, wider than long; snout blunt, angle nearly 120° in front; nostrils narrow, anterior valves united across the internarial space; mouth straight; teeth small; spiracles large without folds; dorsal and caudal fins small and rounded; covered by rigid skin; dermal denticles small, of different sizes; a medial row of thorns in disk and tail, and a three rows arranged in arc of circle on each shoulder; dorsal surface brown with dark cross bands with white spots toward pectoral edges. Such description is consistent with that of Garman (1913), Cadenat (1951), Blache et al. (1970) and Séret & Opic (1991).

Southwards, a new congeneric species was described in the area, *Zanobatus maculatus* Séret (2016). This species is distinguishable from *Z. schoenleinii* by its smaller size (TL max 358 mm vs. at least 600 mm), a more rounded disc, rhombic in the Striped panray, the presence of numerous dark brown blotches of various sizes vs. wavy medium brown crossbars, a more pronounced dermal armature, and spear-shaped vs. polygonal flat dermal denticles, and lower number of tooth rows.

The normal specimen (ref. ISPAB-Zan-sch-01) was a female of 548 mm of TL, 301 mm of DW, and 1,507 g of weight (Fig. 2). Each abnormal specimen was separately described, as follow.

SPECIMEN REF. ISPAB-ZAN-SCH-03 (Fig. 3)

The specimen was a sub-adult male with developed but flexible claspers. It measured 462 mm TL, 267 mm DW, and weighed 746 g. It exhibited a gap or cleft in on the rostrum which was divided in a left and right side, at its distal end (Fig. 3B). According to Ribeiro-Prado et al. (2008), such abnormality occurred in batoid species, and appeared to be more frequent in those with a stronger rostrum, such as skates. It was also reported a bit less in torpedinids and dasyatids (Ribeiro-Prado et al. 2008, Mnasri et al. 2010). These morphological abnormalities are probably due to a failed fusion of pectoral fins during embryonic development (Bigelow & Schroeder 1953). Additionally, Thorson et al. (1983) described the embryonic development of two freshwater stingrays, *Potamotrygon constellata* (Vaillant, 1880) and *P. motoro* (Müller & Henle, 1841). In early stages, the stingray’s pectoral fins begin to separate, then it fuses in medium stages and finally the disc is fully formed in near term embryo.

![Normal specimen of *Zanobatus schoenleinii* (Ref. ISPAB-Zan-sch-01), from the coast of Senegal. Dorsal surface, scale bar= 100 mm](image-url)
Specimen ref. ISPAB-ZAN-sch-04 (Fig. 4)
The specimen was a sub-adult female, which measured 295 mm TL, 225 mm DW, and weighed 392 g in TBW. The general shape of the disc was not circular as in normal specimens, but oblong, longer than wide, displaying pectoral margins obviously rounded. The tail was short and stout, second dorsal and caudal fins were lacking. Its distal end is rounded, entirely covered with skin, no visible unhealed scar was observed, suggesting that reduced tail was not the result of an injury but could be considered as a morphological abnormality.

According to Orlov (2010), the presence of tailless specimens, displaying total or partial loss of tail is likely related with predation by sharks or other voracious teleost species feeding. However, it remains difficult to state if such injury occurred recently or during the earlier life stages of the specimen. It is quite frequent especially in stingrays (Tempelman 1965, Ishihara et al. 1993), but appeared to be more frequent in skates according to recent observations (Mnasri et al. 2009, 2010; Orlov 2010, Capapé et al. 2015a, b; Marouani et al. 2019).

Specimen ref. ISPAB-ZAN-sch-05 (Fig. 5)
The specimen was an adult male, which exhibited developed and rigid claspers, obviously longer than the pelvic fin. It measured 486 mm TL, 290 mm DW, and weighed 1,152 g in TBW. The specimen did not display deformation of the disc, which was sub-circular and with left and right pectoral fins symmetrically arranged (Fig. 5A). Conversely, an X-ray radiograph (Fig. 5B) showed a scoliosis which started from the truncal vertebrae and displaying a curvature strongly developed at level of the pelvic girdle. Seven other curvatures are more or less developed and placed along the entire tail from the pelvic girdle to the caudal fin.
Figure 4. *Zanobatus schoenleinii* (Ref. ISPAB-Zan-sch-04). A. Dorsal surface of tailless specimen, scale bar= 60 mm. B. X-ray radiography, scale bar= 60 mm.

Figure 5. *Zanobatus schoenleinii* (Ref. ISPAB-Zan-sch-05). A. Dorsal surface, scale bar= 80 mm. B. X-ray radiography indicating 1. Pelvic girdle. 2. Scoliosis of truncal vertebrae. 3-9. Tail curvatures, scale bar= 70 mm.
The specimen was a sub-adult male, which exhibited developed but flexible claspers. It measured 361 mm TL, 214 mm DW, and weighed 339 g for TBW. The right pectoral was rounded and normally developed. Conversely, the left pectoral exhibited a margin slightly serrated or fringed. The left margin did not display unhealed scar and the unusual shape of this pectoral fin should be considered as an abnormality rather than an injury. Such as the previous specimen (ref. ISPAB-Zan-sch-05), its X-radiography (see Fig. 6B) showed a scoliosis beginning from terminal truncal vertebrae and strongly curved at level of the pelvic girdle. Six other curvatures occurred along the tail, with the proximal curvature being more developed than the other curvatures.

According to Dawson (1964, 1966, 1971) and Dawson & Heal (1971) three categories of abnormalities occur in fish species, albinism total or partial (leucism, piebaldism), hermaphroditism (total or partial), and abnormalities also called teratological cases or monstrosities (Ribeiro-Prado et al. 2018), also recorded in Zanobatus schoenleinii. A case of hermaphroditism (Capapé et al. 2020a) and three cases of leucism-piebaldism (Diatta et al. 2013, Séret 2016, Capapé et al. 2020b) were previously reported in the species. In this work, four cases of monstrosities are described.

The relationship size (log DW) versus total body weight (log TBW) is log TBW = -6.01 + 3.67 * log DW; r= 0.99; n=108, P < 0.01, and displays a positive allometry although the 4 abnormal specimens were included among the sample (Fig. 7). It appears that these specimens were not considerably affected by a pectoral non-adherent to head and tail abnormalities, with special regard to their development and swimming activities. It is well known that all batoid species use pectoral fins for locomotion as such pattern was previously reported in different species (Mnasri et al. 2010, Orlov 2010, Capapé et al. 2015a, 2015b, 2018).

Figure 6. Zanobatus schoenleinii (Ref. ISPAB-Zan-sch-06). A. Dorsal surface. 1. indicating serrations of the left margin of the pectoral fin, scale bar= 80 mm. B. X-ray radiography indicating 1. Pelvic girdle. 2. Scoliosis of truncal vertebrae. 3-8. Tail curvatures, scale bar= 60 mm. / Zanobatus schoenleinii (Ref. ISPAB-Zan-sch-06). A. Superficie dorsal. 1. indica estrías en el margen izquierdo de la aleta pectoral, barra de escala= 80 mm. B. Radiografía indicando 1. Cintura pélvica. 2. Escoliosis de las vértebras del tronco. 3-8. Curvaturas caudales, barra de escala= 60 mm
Additionally, other cases of abnormalities in the tail of batoid species were reported. Mnasri et al. (2010) recorded, from the Lagoon of Bizerte, a Speckled ray *Raja polystigma* Regan, 1923 with a tail forked at its distal end. Ben Brahim & Capapé (1997) found in the same area a *Torpedo torpedo* (Linnaeus, 1758) having a supernumerary dorsal fin, located at the beginning of the tail, and showing an adipose internal structure. Similarly, Nunes & Piorski (2009) described an adipose dorsal fold on two specimens of the Smooth butterfly ray *Gymnura micrura* (Bloch & Schneider, 1801) from Brazil. On the other hand, Deli Antoni et al. (2012) describe a specimen of the Yellownose skate *Dipturus chilensis* (Guichenot, 1848), from southern Argentina, a supplementary appendage, having rather the shape of a dorsal fin, supported by cartilaginous rays, and located on the dorsal surface of the disc. Bureau (1890) noted that similar supplementary appendages were recorded on *Raja clavata* Linnaeus, 1758.

Zanobatus schoenleinii is a viviparous lecithotrophic species *sensu* Hamlett *et al.* (2005) and the embryos developed together in uteri, as a consequence, tail deformities could be due to intrauterine pressure exerted by embryos between them (Bensam 1965). According to Bonfil (1989) and Ribeiro-Prado *et al.* (2008), during their development, all embryos are exposed in utero to same growth conditions, and the origin of pre-natal abnormalities are rather related to mutations.

Skeletal deformities are an important factor that downgrade fishery production and have a high economic impact due to the fact that abnormal fishes are not preferred by the consumers (Panagiotis 2015). Deformities are a complex mixture of different bone disorders, and among them nutritional factors such as phosphorus deficiency, vitamin C deficiency, vitamin K deficiency and hypervitaminosis, such unfavourable parameters play an important role in fish farming (Silverstone & Hammell 2002), but a bit less in the wild where the role environmental factors cannot be ruled out such as current velocity, water temperature and large exposure to pollutants (Panagiotis 2015). Diop *et al.* (2012) and Bonnin *et al.* (2016) reported that the coast of Senegal, especially around the touristic area of Dakar is facing to pollutants which is locally increasing since some decades and their impact on the local biodiversity cannot be totally ruled out, the present studied cases remain good instances.

Figure 7. Relationship total body weight (TBW) versus disc width (DW) expressed in logarithmic co-ordinates for normal and abnormal specimens of *Zanobatus schoenleinii* collected from the coast of Senegal / Relación entre peso total (TBW) y ancho del disco (DW), expresada en escala logarítmica para especímenes normales y anormales de *Zanobatus schoenleinii* recolectados en la costa de Senegal

Literature cited

Morphological abnormalities in *Zanobatus schoenleinii*

Weigmann S. 2016. Annotated check-list of the living sharks, batoids and chimaeras (Chondrichthyes) of the world, with a focus on biogeographical diversity. Journal of Fish Biology 88(3): 837-1037.