Models in Medicine: the Digital Twin for Health
DOI:
https://doi.org/10.22370/sst.2025.10.4872Keywords:
representation, prediction, mathematical, in silico, biomedical engineeringAbstract
This paper explores the role of models in medicine with a focus on the evolution and application of mathematical and computational models, particularly Digital Twins (DTs). Models in science serve as essential tools for representing complex systems and phenomena, enabling researchers to predict outcomes and develop e↵ective strategies. Historically, models have been integral to advancements in various medical fields, from pharmacokinetics to disease spread and tumor response to certain treatments. In modern medicine, predictive models, including DTs, o↵er transformative potential by improving patient outcomes through personalized medicine, optimizing healthcare management, and enhancing biomedical research. Digital Twins, which are detailed digital replicas of physical entities, are emerging as critical tools in healthcare, capable of simulating everything from individual organs to entire hospital systems. Despite their promise, the implementation of DTs faces challenges such as data privacy, integration, and modelaccuracy. Overcoming these obstacles requires collaboration among healthcare providers, researchers, and technology developers. As the field advances, these models are poised to significantly reshape the future of medical science.
References
Alinier, G., Hunt, B., Gordon, R., & Harwood, C. (2006). E↵ectiveness of intermediate-fidelity simulation training technology in undergraduate nursing education. Journal of Advanced Nursing, 54 (3) pp. 359-369. doi:10.1111/j.1365-2648.2006.03810.x
Baillargeon, B., Rebelo, N., Fox, D. D., Taylor, R. L., & Kuhl, E. (2014). The Living Heart Project: A robust and integrative simulator for human heart function. Eur. J. Mech. A Solids, 48 pp. 38–47.
Cassini, Alejandro. (2016). “Modelos cient´ıficos”. En Diccionario Interdisciplinar Austral, editado por Claudia E. Vanney, Ignacio Silva, y Juan F. Franck. URL=http://dia.austral.edu.ar/Modelos_cientificos.
Digital Twin Consortium. (2020). Digital twin definition. https://www.digitaltwinconsortium.org/2020/12/digital-twin-consortium-defines-digital-win/. (Accessed 30vJuly 2024)
Cilla, M., Martinez, J., Pe˜na, E., & Martinez, M. A. (2012). Machine learning techniques as a helpful tool toward determination of plaque vulnerability. IEEE Transactions on Biomedical Engineering, 59 (4), 1155e1161. https://doi.org/10.1109/TBME.2012.2185495
DISCIPULUS Project. (2012). The digital patient: Roadmap. https: //cordis.europa.eu/docs/projects/cnect/3/288143/080/deliverables/001-discipulusleafletextendedversion1.pdf. (Accessed 30 July 2024)
Erdemir et al. J Transl Med, 18(369), 2020. https://doi.org/10.1186/s12967-020-02540-4
Frigg, Roman, and Stephan Hartmann. “Models in Science.”The Stanford Encyclopedia of Philosophy (Fall 2024 Edition), Edward N. Zalta & Uri Nodelman (eds.). URL=https://plato.stanford.edu/archives/fall2024/entries/models-science/.
Hodges, Wilfrid. “Model Theory.”The Stanford Encyclopedia of Philosophy (Fall 2023 Edition), Edward N. Zalta & Uri Nodelman (eds.). URL=https://plato.stanford.edu/archives/fall2023/entries/model-theory/.
Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117 (4) , pp. 500-544. doi: 10.1113/jphysiol.1952.sp004764
Katsoulakis, E., Wang, Q., Wu, H., et al. (2024). Digital twins for health: a scoping review. npj Digit. Med., 7, p. 77. https://doi.org/10.1038/s41746-024-01073-014
Models in Medicine: the Digital Twin for Health Kermack, W. O., & McKendrick, A. G. (1927). A Contribution to the Mathematical Theory of Epidemics. Proceedings of the Royal Society of London. Series A Containing Papers of a Mathematical and Physical Character, 115 (772) , pp. 700-721. doi:10.1098/rspa.1927.0118 Kolla, L., Gruber, F. K., Khalid, O., Hill, C., & Parikh, R. B. (2021).
The case for AI-driven cancer clinical trials - The efficacy arm in silico. Biochim Biophys. Acta Rev. Cancer, 1876, 188572.
Lamas, A. (2016). Historia de la Medicina: Hechos y personajes (2da Edición). Editorial Mediterráneo, Chile, p. 82-83.
Michaelis, L., & Menten, M. L. (1913). Die Kinetik der Invertinwirkung. Biochemische Zeitschrift, 49 pp. 333-369.
Osorio, J.A., Scheer, J.K., & Ames, C.P. (2016). Predictive modeling of complications. Curr. Rev. Musculoskelet. Med., 9 pp. 333–337.
Paul, G. (2023). Digital Human Modeling and Medicine: The Digital Twin. ACADEMIC PRESS, Elsevier International.
Redmond, J. (2022). El desafío de razonar sustitutivamente en la práctica de modelización en ciencia. Cuadernos Filosóficos, 19.
Rifaioglu, A. S., et al. (2019). Recent applications of deep learning and machine intelligence on in silico drug discovery: methods, tools, and databases. Brief. Bioinform, 20, pp. 1878–1912.
Sahal, R., Alsamhi, S. H., & Brown, K. N. (2022). Personal Digital Twin: A Close Look into the Present and a Step towards the Future of Personalized Healthcare Industry. Sensors (Basel), 22. https://doi.org/10.3390/s22155918.
Simeoni, M., Magni, P., Cammia, C., De Nicolao, G., Croci, V., Pesenti, E., Germani, M., Poggesi, I., & Rocchetti, M. (2004). Predictive pharmacokinetic-pharmacodynamic modeling of tumor growth kinetics in xenograft models after administration of anticancer agents.
Cancer Research, 64 (3) , pp. 1094-1101. doi:10.1158/0008-5472.CAN-03-2524
Sun, T., He, X., Song, X., Shu, L., & Li, Z. (2022). The Digital Twin in Medicine: A Key to the Future of Healthcare? FrontMed (Lausanne), 9, 907066.
Toma, M., Wei, O.C. (2023). Predictive Modeling in Medicine. Encyclopedia, 3 , pp. 590–601. https://doi.org/10.3390/encyclopedia3020042
Wakefield, J. (2022). Why you may have a thinking digital twin within a decade. BBC News. https://www.bbc.com/news/business-61742884.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.