Analysis of Genetic Theory in the light of the structure of scientific revolutions

Pedro Martínez-Gómez, Ana Cuevas-Badallo, María Cerezo

Abstract


The Post-genomic Era includes features both from a methodological and epistemic point of view and from an ontological perspective. Firstly, it incorporates new methods of high-throughput sequencing of DNA and RNA, and the development of complete genomes that allow a precise reference of the molecular results obtained. In addition, from an ontological perspective, the centre of gravity of the molecular processes is placed on the expression of genes, and the way in which such expression is regulated; these features turn the attention towards the study of Gene Regulatory Networks, and in particular to the role of RNA. This new molecular-biological perspective based on new methodologies and approaches is affecting the existing Molecular Genetics Theory including the definition of gen and Central Dogma of Molecular Biology. An important philosophical challenges posed by this new situation is the question whether there is a sophistication of the present theory or a New Theory of Molecular Genetics (a change of paradigm) and whether there is an incommensurability between this theory and the accepted theory (the existing paradigm). In this work we evaluate these changes in the light of Kuhn’s theory of scientific revolution in order to propose an alternative between a moderate and a strong view. According to the moderate one, the Post-genomic changes do not properly involve a paradigm shift or, if they do, they constitute a minor revolution. The strong view considers that, the anomalies disclosed in the Molecular Genetics Theory at conceptual and methodological level and the Post-genomic changes they lead to suppose a scientific paradigm shift.


Keywords


Classical Genetics; Molecular Genetics; Genetics of Molecular Processes; Scientific Paradigm; Scientific Revolution; Gene; Central Dogma of Molecular Biology

References


ARTOLA, M. & SÁNCHEZ-RON, J.M. (2012). Los pilares de la ciencia. Madrid: Ed. Espasa.

BATESON, W. (1906). "The progress of genetic research". In Report of the Third International Conference on Genetics (1906) (ed. W. Wilks). London: Royal Horticultural Society, 90-97.

BECHTEL, W. (2008). Discovering cell mechanisms. The creation of modern cell biology. Cambridge, Reino Unido: Ed. Cambridge Studies in Philosophy and Biology.

BERGER, S.L. & KOUZARIDES, T. & SHIEKHATTAR, R. & SHILATIFARD, A. (2009). "An operational definition of epigenetics". Genes Development 23, 781-783.

BRETT, D. & KEMMNER, W. & KOCH, G. & ROEFZAAD, C. & GROSS, S. & SCHLAG, P.M. (2001). "A rapid bioinformatic method identifies novel genes with direct clinical relevance to colon cancer". Oncogene 20, 4581–4585.

BRIGANDT, I. (2004). "Holism, concept individuation, and conceptual change". Proceedings of the 4 Congress of the Spanish Society of Analytic Philosophy, Murcia, 30-34.

BRIGANDT, I. (2010a). "The epistemic goal of a concept: accounting for the rationality of semantic change and variation". Synthesis 177, 19–40.

BRIGANDT, I. (2010b). "Beyond reduction and pluralism: Toward an epistemology of explanatory integration in biology". Erkenntnis 73, 295–311.

BUIATTI, M. (2012). Las Biotecnologías. Traducción de P.M. García Fraile. Madrid: Acento Editorial.

BURIAN, R.M. (1986). "On Conceptual Change in Biology: The Case of the Gene". En D. J. Depew and B. H. Weber (eds.) Evolution at a Crossroads, Cambridge, MA: MIT Press, 21 - 42.

BURIAN, R.M. (2004). "Molecular epigenesis, Molecular pleiotropy, and Molecular Gene Definitions". History of Philosophy of the Life Science 26, 59–80.

CARNAP, R. (1932-1995). The Unity of Science. Thoemmes Press, Bristol, Reino Unido. Publicado originalmente en alemán en 1932 en Erkenntnis 2: 432-465 bajo el título «Die physikalishe Sprache als Universalsprache der Wissenschaft».

CRICK, F. (1958). "On protein synthesis". Symposia of the Society of Experimental Biology 22, 138–163.

CRICK, F. (1970). "Central dogma of molecular biology". Nature 227, 561–563.

DARDEN, L. (2006). Reasoning in Biological discoveries. Essays on Mechanisms, Interfield. Relations and anomaly resolution. Cambridge Studies in Philosophy and Biology. Cambridge: Cambridge University Press.

DAXINGER, L. & WHITELAW, E. (2010). "Transgenerational epigenetic inheritance: more questions than answers". Genome Research 20, 1623-1628.

DUPRÉ, J. (1993). The Disorder of Things: Metaphysical Foundations of the Disunity of Science, Cambridge, MA: Harvard University Press.

DUPRÉ, J. (2004). "Understanding contemporary Genomics", Perspectives on Science 12, 320-338.

DUPRÉ, B. (2010). 50 Cosas que hay que saber sobre Filosofía. Traducción de Elisenda Julibert. Barcelona: Editorial Ariel.

FEYERABEND, P. (1962). "Explanation, Reduction and Empiricism". En H. Feigl y G. Maxwell (eds.) Minnesota Studies in The Philosophy of Science. Vol. III, 28-97.

FOGLE, T. (2000). "The dissolution of protein coding genes in molecular biology". En P. Beurton, R. Falk, and H-J. Rheinberger, The Concept of the Gene in Development and Evolution. Historical and Epistemological Perspectives. Cambridge: Cambridge University Press, 3-25.

GARCÍA-SANCHO, M. (2010). "A new insight into Sanger´s development of sequencing: From proteins to DNA", 1943-1977. Journal of the History of Biology 43, 265–223.

GERMAIN, P. L. & RATTI, E. & BOEM, F. (2014). "Junk or Functional DNA? ENCODE and the Function Controversy". Biology and Philosophy: 29, 807–831.

GERSTEIN, MB. & CAN, B. & ROZWOSKY, J.S. & col. (2007). "What is a gene, post-ENCODE?". Genome Research 17, 669–681.

GILBERT, W. (1978). "Why genes in pieces". Nature 271, 501–501.

GRIFFITHS, P. & STOTZ, K. (2006). "Genes in the postgenomic era". Theor Med Biotechnology 27, 499-521.

GRIFFITHS, P. & STOTZ, K. (2013). Genetics and Philosophy. An Introduction. Cambridge: Cambridge University Press.

HARROW, J. & FRANKISH, A. & GONZÁLEZ, J. & TAPARINI, E. & col. (2012). "GENCODE: The human genome annotation for the ENCODE project". Genome Research 22, 1760–1774.

HEATHER, D (2014). "Pure science and the problem of progress". Studies in History and Philosophy of Science Part A 46, 55-63.

HEMPEL, C.G. & OPPENHEIM, P. (1948). "Studies in the Logic of Explanation". Philosophy of Science 15, 135-175.

HEMPEL, C.G. (1966). Philosophy of Natural Science, Englewood Cliffs, N.J.: Prentice-Hall.

HENIKOFF, S. (2005). "Rapid changes in plant genomes". The Plant Cell 17, 2852-2855.

HOYNINGEN-HUENE, P. (1989/1993). Reconstructing Scientific Revolutions: Thomas S. Kuhn’s Philosophy of Science. Chicago: University of Chicago Press.

HULL, D. (1974). Philosophy of Biological Science, Englewood Cliffs, NJ: Prentice-Hall.

International Human Genome Sequencing Consortium (2001). "Initial sequencing and analysis of the human genome". Nature 409, 860–921.

JOHANNSEN, W. (1909). Elemente der exakten Erbichkeitslehre. Jena: Ed. Gustav Fischer.

KITCHER, P.S. (1992). "Gene: Current Usages". En E. Keller and L Lloyd (eds.), Keywords in Evolutionary Biology. Cambridge, MA: Harvard University Press, 128-131.

KITCHER, P.S. (1993). The advances of science. Science without legend, objectivity without illusions. Oxford: Oxford University Press.

KITCHER, P.S. (2003). In Mendel´s Mirror. Philosophical Reflections on Biology. Oxford: Oxford University Press.

KNIGTH, R. (2007). "Reports of the death of the gene are greatly exaggerated". Biology and Philosophy 22, 293-306.

KUHN, T. S. (1962). The Structure of Scientific Revolutions. Chicago: The University of Chicago Press.

KUHN, T.S. (1973). The Structure of Scientific Revolutions. 2ª ed. Foundation of the Unity of Science, Vol. II, nº 2. Chicago: University of Chicago Press.

KUHN, T.S. (1976). «Theory Change as Structure-Change: Comments on the Sneed Formalism», Erkenntnis, 10, 179-199.

KUHN, T.S. (1982). «Commensurability, Comparability, Communicability», Proceedings of the Biennial Meeting of the Philosophy of Science Association, 669-688.

KUHN, T. S. (1993). "Afterwords", en Horwich, P. (ed.) World Changes. Thomas Kuhn and the Nature of Science. Cambridge Massachusetts: MIT Press, 311-41.

LAKATOS, I. (1978). The methodologies of Scientific Research Programmes. Philosophical papers Vol. 1. Cambridge: Cambridge University Press.

LAUDAN, L. (1977). Progress and its problems. Towards a Theory of Scientific Growth. University of California Press, Los Angeles, USA.

LEE, R.C. & FEINBAUM, R.L. & AMBROS, V. (1993). "The C-elegans heterochronic gene Lin-4 encodes small RNAs with antisense complementarity to Lin-14". Cell 75, 843–854.

MARCUM, J.A. (2012). "From paradigm to disciplinary matrix and exemplar". En Kuhn’ s The Structure of Scientific Revolutions Revisited. Ed. Vasso Kindi y Theodore Arabatzis. Nueva York: Ed. Routledge, 41-63.

MARTÍNEZ-GÓMEZ, P. & SÁNCHEZ-PÉREZ, R. & RUBIO, M. (2012). "Clarifying omics concepts, challenges and opportunities for Prunus breeding in the Post-genomic Era". OMICS: A Journal of Integrative Biology 16, 268–283.

MASTERMAN, M. (1972). "The nature of paradigm", en Lakatos y Mugave (eds.) Criticism and the growth of knowledge. Cambridge: Cambridge University Press, 59-89.

MAYR, E. (1982). The growth of biological thought. Cambridge: Harvard University Press. La naturaleza de la herencia. Traducción de Vivette García Deister.

MENDEL, G. (1934). "Experimentos sobre híbridos en plantas". Revista Argentina de Agronomía 1: 1–38 (traducido del alemán del artículo original: Mendel G (1866) Versuche über Pflanzen-Hybriden. Verhandlungen des Naturforschenden Vereines, Abhandlungen, Brünn 4, 3-37.

MOULINES, C.U. (2015). Popper y Kuhn. Dos gigantes de la filosofía de la ciencia del Siglo XX. Madrid: Ed. Batiscafo.

NAGEL. E. (1961). The structure of Science: Problems in the Logic of Scientific Explanation. London: Ed. Routledge and Kegan Paul.

NEUMANN-HELD, E. (2001). "Let’s Talk about Genes: The process Molecular Gene Concept and Its Context". En S. Oyama, P. E. Griffiths and R. D. Gray (eds.), Cycles of Contingency. Cambridge, MA: Bradford, MIT Press.

NIINILUOTO, I. (1984). Is Science Progressive? Dordrecht: Ed. Springer.

OLBY, R. C. (1966). Origins of Mendelism. New York: Ed. Schocken Books.

POPPER, K. (1962). Lógica de la Investigación Científica. Madrid: Ed. Tecnos.

PORTIN, P. (1993). "The Concept of the Gene: Short History and Present Status". The Quarterly Review of Biology 68: 173-223.

PORTIN, P. (2015). "The Development of Genetics in the Light of Thomas Kuhn’s Theory of Scientific Revolutions". Recent Advances in DNA & Gene Sequences 9, 1-12.

Rescher, N. (1994). Los límites de la ciencia. Madrid: Ed. Tecnos.

RILEY, M. & PARDEE, A.B. & JACOB, F. & MONOD, J. (1960). "Expression of a structural gene". Journal of Molecular Biology 2, 261–225.

ROSENBERG, A. (1985). The Structure of Biological Science, Chicago, IL: University of Chicago Press.

SCHAFFNER, K.H. (1967). "Approaches to Reduction". Philosophy of Science 34: 137-147.

STOTZ, K.C. & BOSTANCI, A. & GRIFFITHS, P.E. (2006). "Tracking the shift to ‘postgenomics’". Community Genetics 9, 190-196.

STROHMAN, R.C. (1997). "The coming kuhnian revolution in biology". Nature Biotechnology 15, 194-200.

TOULMIN, S. (1953). The philosophy of Science. London: Ed. Hutchinson.

VENTER J.C. y col. (2001) "The sequence of the human genome". Science 291, 1304–1351.

WATERS, C.K. (1994). "Genes Made Molecular", Philosophy of Science 61, 163-85.

WATSON, J.D. & CRICK, F.H.C. (1953). "Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid". Nature 171, 737–738.

WATSON, J.D. (2006). ADN. El secreto de la vida. Traducida por Irene Cifuentes y Teresa Carretero. Sexta Edición. Buenos Aires: Alfaguara SA.

WOOD, R.J. & VITEZSLAV, O. (2005). Genetic Prehistory in Selective Breeding. A prelude. Oxford: Ed. University Press.




DOI: https://doi.org/10.22370/rhv.2015.6.144

Copyright (c) 2015 Humanities Journal of Valparaiso

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.