Conceptual Change and Tool Development: The Challenges of the Neurosciences to the Philosophy of Scientific Revolutions

Authors

  • Sergio Daniel Barberis CONICET-UNQ / UBA / UDESA

DOI:

https://doi.org/10.22370/rhv2022iss20pp165-181

Keywords:

scientific revolution, conceptual change, tool development, Golgi’s method, neuron doctrine

Abstract

The determining role that tool development plays in neuroscientific progress poses special challenges to the Kuhnian-rooted philosophy of scientific change. Some philosophers of neuroscience argue that revolutions in neuroscience do not involve paradigm shifts, but instead depend exclusively on technical or experimental innovation. By studying the historical episode of the discovery of the neuron (1873-1909), I argue that revolutions in neuroscience, like many other laboratory revolutions, are frequently driven by the intertwining of technical innovations and conceptual change.

References

Alegre, M. C. (2018). La estructura de las revoluciones kuhnianas. Perspectivas, 3(2), 89-120.

Bentivoglio, M., Cotrufo, T., Ferrari, S., Tesoriero, C., Mariotto, S., Bertini, G., Berzero, A., Mazzarello, P. (2019). The original histological slides of Camillo Golgi and his discoveries on neuronal structure. Frontiers in neuroanatomy, 13, 3.

Bickle, J. (2016). Revolutions in neuroscience: Tool development. Frontiers in systems neuroscience, 10, 24.

Bickle, J. (2022). Tinkering in the Lab. In Bickle, J., Craver, C. F., Barwich, A. S. (Eds.), The Tools of Neuroscience Experiment, pp. 13-36. Nueva York: Routledge.

Boone, W., & Piccinini, G. (2016). The cognitive neuroscience revolution. Synthese, 193(5), 1509-1534.

Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G., Deisseroth, K. (2005). Millisecond-timescale, genetically targeted optical control of neural activity. Nature neuroscience, 8(9), 1263-1268.

Cajal, S. (1888). Estructura de los centros nerviosos de las aves. Revista trimestral de histología normal y patológica, 1. Madrid.

Cajal, S. (1889) Conexión general de los elementos nerviosos, La Medicina Práctica, 88, 341-346.

Cajal, S. (1909) Histologie du système nerveux de l’homme & des vertébrés.

Cajal, S. (2006). Recuerdos de mi vida. Barcelona: Crítica, Fundación Iberdrola.

Cajal, S. (1891) Significación fisiológica de las expansiones protoplasmáticas y nerviosas de las células de la sustancia gris. Revista de Ciencias Médicas de Barcelona, (22/23).

Cimino, G. (1999). Reticular theory versus neuron theory in the work of Camillo Golgi. Physis. rivista internazionale di storia della scienza, 36(2), 431-472.

Craver, C. F., Alexandrova, A. (2008). No revolution necessary: neural mechanisms for economics. Economics & Philosophy, 24(3), 381-406.

Craver, C. F., Darden, L. (2013). In search of mechanisms: Discoveries across the life sciences. Chicago: University of Chicago Press.

Craver, C. F. (2007). Explaining the brain: Mechanisms and the mosaic unity of neuroscience. Oxford: Clarendon Press.

DeFelipe, J., Jones, E. G. (1992). Santiago Ramón y Cajal and methods in neurohistology. Trends in neurosciences, 15(7), 237-246.

De Robertis, E. D., Bennett, H. S. (1955). Some features of the submicroscopic morphology of synapses in frog and earthworm. The Journal of Cell Biology, 1(1), 47-58.

Fiorentini, E. (2011). Inducing visibilities: An attempt at Santiago Ramón y Cajal’s aesthetic epistemology. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 42(4), 391-394.

Ginnobili, S., Barberis, S. (en prensa). Inconmensurabilidad y solapamiento. ¿Es adecuado un enfoque puramente extensional para dar cuenta de la inconmensurabilidad semántica?

Golgi, C. (1873). Sulla sostanza grigia del cervello. Gazetta Medica Italiana, 33, 244-246.

Golgi, C. (1875). Sulla fina struttura dei bulbi olfacttoria. Riv. Sper. Freniatria Med. Legal., 1, 66-78.

Golgi, C. (1885). Sulla fina anatomia degli organi centrali del sistema nervoso. Milán: Ulrico Hoepli.

Hacking, I. (2012). Introduction. En Kuhn, T. (2012). The Structure of Scientific Revolutions, pp. 1-9. Chicago/London: University of Chicago Press.

Haueis, P. (2022). Exploratory concept formation and tool development in neuroscience. Philosophy of Science, 1-44. https://doi.org/10.1017/psa.2022.79

His, W. (1886). Zur Geschichte des menschlichen Rückenmarkes und der Nerven-wurzeln. Leipzig: S. Hirsel. Abhandl. Math. -Phys. Class. Königl. säch. Gesellsch. Wiss., Leipzig 13: 147–209, 477–513.

Hoyningen-Huene, P. (1993). Reconstructing scientific revolutions: Thomas S. Kuhn’s philosophy of science. Chicago: University of Chicago Press.

Hubel, D. H., Wiesel, T. N. (1959). Receptive fields of single neurones in the cat’s striate cortex. The Journal of physiology, 148(3), 574.

Kuhn, T. (2021), The Quest for Physical Theory: Problems in the Methodology of Scientific Research. Cambridge: MIT Libraries.

Kuhn, T. (1970) The Structure of Scientific Revolutions. Chicago: University of Chicago Press.

Kuhn, T. (2000) The Road Since ‘Structure’: Philosophical Essays, 1970-1993, with an Autobiographical Interview. Chicago: University of Chicago Press.

Kuhn, T. (2017) Desarrollo científico y cambio de léxico. Montevideo: FIC-UDELAR/ ANII /SADAF.

Kwong, K. K., Belliveau, J. W., Chesler, D. A., Goldberg, I. E., Weisskoff, R. M., Poncelet, B. P., et al (1992). Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proceedings of the National Academy of Sciences, 89(12), 5675-5679.

Laín Entralgo, P. (1949). Dos biólogos: Claudio Bernard y Ramón y Cajal. Buenos Aires: Espasa-Calpe.

Mazzarello, P. (2010). The Hidden Structure. A Scientific Biography of Camillo Golgi. Oxford: OUP.

Mazzarello, P. (2018). From images to physiology: a strange paradox at the origin of modern neuroscience. Progress in brain research, 243, 233-256.

Miłkowski, M., Clowes, R., Rucińska, Z., Przegalińska, A., Zawidzki, T., Krueger, J., et al (2018). From wide cognition to mechanisms: A silent revolution. Frontiers in Psychology, 2393.

Palay, S. L., Palade, G. E. (1955). The fine structure of neurons. The Journal of biophysical and biochemical cytology, 1(1), 69.

Parker, D. (2018). Kuhnian revolutions in neuroscience: the role of tool development. Biology & Philosophy, 33(3), 1-25.

Politi, V. (2020). Taxonomies, Networks, and Lexicons: A Study of Kuhn’s Post-‘Linguistic Turn’ Philosophy. International Studies in the Philosophy of Science, 33(2), 87-103.

Shepherd, G. M., Greer, C. A., Mazzarello, P., Sassoè-Pognetto, M. (2011). The first images of nerve cells: Golgi on the olfactory bulb 1875. Brain research reviews, 66(1-2), 92-105.

Shepherd, G. M. (2015). Foundations of the neuron doctrine. Oxford University Press.

Sherrington, Charles Scott (1897). The central nervous system. En Foster, M. (Ed.), A Text-Book of Physiology, pp. 928-929. Londres: Macmillan.

Silva, A. J., Stevens, C. F., Tonegawa, S., Wang, Y. (1992). Deficient hippocampal long-term potentiation in α-calcium-calmodulin kinase II mutant mice. Science, 257(5067), 201-206.

Downloads

Published

2022-12-01 — Updated on 2022-12-02

How to Cite

Barberis, S. D. (2022). Conceptual Change and Tool Development: The Challenges of the Neurosciences to the Philosophy of Scientific Revolutions. Revista De Humanidades De Valparaíso, (20), 165–181. https://doi.org/10.22370/rhv2022iss20pp165-181

Issue

Section

Monographic Section