Effect of fasting on molting and survival rate in post-larvae of the shrimp Litopenaeus vannamei
DOI:
https://doi.org/10.22370/rbmo.2023.58.1.4133Palabras clave:
Litopenaeus vannamei, fasting, molting, post-larvae, survival rateResumen
The objective of the present study was to evaluate the effect of different fasting periods on mortality of Litopenaeus vannamei post-larvae and the time it took to molt or die. The study applied an experimental design using 20-days-old post-larvae (PL), with a control group subjected to continuous feeding (CF) and 9 treatments (S2, S4, S6, S8, S10, S12, S14, S16, S18) with varying fasting periods, followed by continuous feeding. The time at which food deprivation resulted in death was analyzed for 50% of the post-larvae, even when they received food after fasting. Statistical analysis of time to molt identified 3 different groups (P < 0.05): group 1 with continuous feeding, group 2 with fasting periods of 2 and 4 days (S2, S4), and group 3 with fasting periods between 6-18 days (S6-S18). In control group with continuous feeding, the time to molt was estimated at about 3.44 ± 0.68 days. Time to death, showed 2 significantly different treatment groups (P < 0.05). In CF treatment, all PLs survived. The first group consisted of fasting tests for 2 and 4 days (S2, S4). The second group corresponded to fasting periods from S6 to S18 days, resulting in the shortest time to death with 71.43 and 100% of individuals dead. The PNR50 was estimated to be around 3.97 ± 0.31 days, demonstrating that fasting periods affected development and potentially caused death in PL of L. vannamei.
Citas
Alday-Sanz V. 2010. The shrimp book, 907 pp. Nottingham University Press, Thrumpton.
Anger K. 1987. The do threshold: A critical point in the larval development of decapod crustaceans. Journal of Experimental Marine Biology and Ecology 108: 15-30.
Anger K & A Balkema. 2001. The biology of decapod crustacean larvae. Journal of Experimental Marine Biology and Ecology 14: 1-420.
Barclay MC, W Dall & DM Smith. 1983. Changes in lipid and protein during starvation and the moulting cycle in the tiger prawn Penaeus esculentus (Haswell). Journal of Experimental Marine Biology and Ecology 68: 229-244.
Bardera G, MA Owen, D Pountney, ME Alexander & KA Sloman. 2019. The effect of short-term feed-deprivation and moult status on feeding behaviour of the Pacific white shrimp (Litopenaeus vannamei). Aquaculture 511, 734222. <https://doi.org/10.1016/j.aquaculture.2019.734222>
Brito R, ME Chimal, R Gelabert, G Gaxiola & C Rosas. 2004. Effect of artificial and natural diets on energy allocation in Litopenaeus setiferus (Linnaeus, 1767) and Litopenaeus vannamei (Boone, 1931) early postlarvae. Aquaculture 237(1-4): 517-531.
Calvo N, C Tropea, K Anger & LS López-Greco. 2012. Starvation resistance in juvenile freshwater crayfish. Aquatic Biology 16: 287-297.
Chen YY, JC Chen, YC Lin, ST Yeh & CL Huang. 2015. White shrimp Litopenaeus vannamei that have received Gracilaria tenuistipitata extract show early recovery of immune parameters after ammonia stressing. Marine Drugs 13: 3606-3624.
Comoglio LI, G Gaxiola, A Roque, G Cuzon & O Amin. 2004. The effect of starvation on refeeding, digestive enzyme activity, oxygen consumption, and ammonia excretion in juvenile white shrimp Litopenaeus vannamei. Journal of Shellfish Research 23(1): 243-249.
Corteel M, JJ Dantas-Lima, M Wille, V Alday-Sanz, MB Pensaert, P Sorgeloos & HJ Nauwynck. 2012. Moult cycle of laboratory-raised Penaeus (Litopenaeus) vannamei and P. monodon. Aquaculture International 20(1): 13-18.
Cuzon G, C Cahu, JF Aldrin, JL Messager, G Stehphan & M Mevel. 1980. Starvation effect on metabolism of Penaeus japonicus. Proceedings of the World Mariculture Society 11: 410-423.
Dall W. 1974. Indices of nutritional state in the western rock lobster, Panulirus longipes (Milne Edwards). I. Blood and tissue constituents and water content. Journal of Experimental Marine Biology and Ecology 16: 176-180.
Dastidar PG, A Mallik & N Mandal. 2013. Contribution of shrimp disease research to the development of the shrimp aquaculture industry: an analysis of the research and innovation structure across the countries. Scientometrics 97(3): 659-674.
De Schryver P, D Thi-Hoang & R Geer. 2017. Estrategias para el control del síndrome de la mortalidad temprana. Revista Aquacultura 117: 38-41.
FAO. 2018. The state of world fisheries and aquaculture 2018 - meeting the sustainable development goals, 227 pp. FAO, Rome.
Hernández C, D Voltolina, P Rojas & M Nieves. 2001. Tests of quality of shrimp postlarvae in commercial hatcheries: A case of study. Hidrobiológica 11(1): 69-74.
Kiatmetha P, W Siangdang, B Bunnag, S Senapin & B Withyachumnarnkul. 2011. Enhancement of survival and metamorphosis rates of Penaeus monodon larvae by feeding with the diatom Thalassiosira weissflogii. Aquaculture International 19(4): 599-609. <https://doi.org/10.1007/s10499-010-9375-y>
Lavens P & P Sorgeloos. 2000. Experiences on importance of diet for shrimp postlarval quality. Aquaculture 191(1/3): 169-176.
Luan, S, G Qiang, B Cao, K Luo, X Meng, B Chen & J Kong. 2020. Feed competition reduces heritable variation for body weight in Litopenaeus vannamei. Genetics Selection Evolution 52(1): 1-11.
Meyer-Willerer AO. 2005. Survival of white shrimp larvae grown in different containers and fed natural or artificial diets. Avances en Investigación Agropecuaria 9(1): 1-8.
Muhlia-Almazan A & FL Garcia-Carreño. 2002. Influence of molting and starvation on the synthesis of proteolytic enzymes in the midgut gland of the white shrimp Penaeus vannamei. Comparative Biochemistry and Physiology Part B 133: 383-394.
Muller-Feuga A, R Robert, C Cahu, J Robin & P Divanach. 2003. Uses of microalgae in aquaculture. Live Feeds in Marine Aquaculture 1: 253-299.
Naegel LCA & S Rodríguez-Astudillo. 2004. Comparison of growth and survival of white shrimp postlarvae (Litopenaeus vannamei) fed dried Artemia biomass versus four commercial feeds and three crustacean meals. Aquaculture International 12(6): 573-581.
Paschke KA, P Gebauer, F Buchholz & K Anger. 2004. Seasonal variation in starvation resistance of early larval North Sea shrimp Crangon crangon (Decapoda: Crangonidae). Marine Ecology Progress Series 279: 183-191.
Pascual C, A Sánchez, E Zenteno, G Cuzon, G Gaxiola, R Brito, R Gelabert, E Hidalgo & C Rosas. 2006. Biochemical, physiological, and immunological changes during starvation in juveniles of Litopenaeus vannamei. Aquaculture 251: 416-419.
Piccinetti CC, M Donati, G Radaelli, G Caporale, G Mosconi, F Palermo, L Cossignani, R Salvatori, RP Lopez & I Olivotto. 2015. The effects of starving and feeding on Dover sole (Solea, Soleidae, Linnaeus, 1758) stress response and early larval development. Aquaculture Research 46: 2512-2526.
Racotta IS, E Palacios & AM Ibarra. 2003. Shrimp larval quality in relation to broodstock condition. Aquaculture 227(1/4): 107-130.
Regnault M. 1981. Respiration and ammonia excretion of the shrimp Crangon L.: Metabolic response to prolonged starvation. Journal of Comparative Physiology 141: 549-555.
Rosas C, G Cuzon, G Gaxiola, C Pascual, G Taboada, L Arena & A van Wormhoudt. 2002. An energetic and conceptual model of the physiological role of dietary carbohydrates and salinity on Litopenaeus vannamei juveniles. Journal of Experimental Marine Biology and Ecology 268: 47-67.
Sacristán HJ, H Nolasco-Soria & LS López-Greco. 2014. Effect of attractant stimuli, starvation period, and food availability on digestive enzymes in the redclaw crayfish Cherax quadricarinatus (Parastacidae). Aquatic Biology 23: 87-99.
Sacristán HJ, M Ansaldo, LM Franco-Tadic, AV Fernández-Giménez & LS López-Greco. 2016. Long-term starvation and posterior feeding effects on biochemical and physiological responses of midgut gland of Cherax quadricarinatus Juveniles (Parastacidae). PloS ONE 11(3): e0150854. <https://doi.org/10.1371/journal.pone.0150854>
Sánchez-Paz A, F Garcıa-Carreno, A Muhlia-Almazán, NY Hernández-Saavedra & G Yepiz-Plascencia. 2003. Differential expression of trypsin mRNA in the white shrimp (Penaeus vannamei) midgut gland under starvation conditions. Journal of Experimental Marine Biology and Ecology 292(1): 1-17.
Sánchez-Paz A, F García-Carreño, J Hernández-López, A Muhlia-Almazán & G Yepiz-Plascencia. 2007. Effect of short-term starvation on hepatopancreas and plasma energy reserves of the Pacific white shrimp (Litopenaeus vannamei). Journal of Experimental Marine Biology and Ecology 340(2): 184-193.
Sokal R & F Rohlf. 1995. Biometry: The principles and practice of statistics in biological research, 887 pp. WH Freeman, New York.
Speck U & K Urich. 1969. Consumption of body constituent during starvation in the crayfish, Orconectes limosus. Physiology 63: 410-414.
Stuck KC & RM Overstreet. 1994. Effect of Baculovirus penaei on growth and survival of experimentally infected postlarvae of the Pacific white shrimp, Penaeus vannamei. Journal of Invertebrate Pathology 24: 18-25.
Stuck KC, SA Watts & SY Wang. 1996. Biochemical responses during starvation and subsequent recovery in postlarval Pacific white shrimp, Penaeus vannamei. Marine Biology 125(1): 33-45.
Urzúa Á & K Anger. 2013. Seasonal variations in larval biomass and biochemical composition of brown shrimp, Crangon (Decapoda, Caridea), at hatching. Helgoland Marine Research 67(2): 267-277.
Vogt G, V Storch, ET Quinito & FP Pascual. 1985. Midgut gland as monitor organ for the nutritional value of diets in Penaeus monodon (Decapoda). Aquaculture 48: 1-12.
Wang SY & WB Stickle. 1986. Changes in nucleic acid concentration with starvation in the blue crab Callinectes sapidus Rathbun. Journal of Crustacean Biology 6: 49-56.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Patricia Ochoa-Pereira, Patricio Colón Velásquez-López

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
• Los autores que publican en la RBMO transfieren sus derechos de publicación a la Universidad de Valparaíso, conservando los derechos de propiedad intelectual para difundir ampliamente el artículo y la revista en cualquier formato.
• La RBMO autoriza el uso de figuras, tablas y extractos breves de su colección de manuscritos, en trabajos científicos y educacionales, siempre que se incluya la fuente de información.