Comparación de la frecuencia y permanencia de frentes térmicos utilizando datos de diferente dimensión espacial y resolución de imágenes de satélite en la región sur de la Corriente de California

Comparison of thermal fronts frequency and permanence using data of different spatial dimensions and satellite images resolution in California Current southern region

Autores/as

DOI:

https://doi.org/10.22370/rbmo.2023.58.3.4260

Palabras clave:

Frente de temperatura, frecuencia de frentes, oceanografía satelital, Corriente de California

Resumen

Se evaluó la mejor dimensión de la escala espacial (dimensión de cuadrantes) y resolución espacial de imágenes (1 y 4 km), con respecto a la frecuencia y permanencia de frentes oceánicos de temperatura que caracterizan la variabilidad estacional e interanual en la región sur del Sistema de la Corriente de California durante 2006-2010, a partir del análisis de imágenes diarias de temperatura superficial del mar (“Multi-scale Ultra-high Resolution” de 1 km y “Advanced Very High Resolution Radiometer” de 4 km de resolución de píxel). La identificación de los frentes oceánicos de temperatura se realizó mediante el algoritmo de detección de borde (SIED, por sus siglas en inglés). Para identificar la mejor distribución de los frentes se compararon diferentes dimensiones de cuadrantes (0,5°, 1,0° y 2,0° latitud y longitud geográfica). El cuadrante de 1,0° resultó ser el más adecuado por presentar una menor dispersión de la frecuencia de frentes y un mayor número de observaciones, aunado a las imágenes de alta resolución (1 km) que permitieron detectar un mayor número de estructuras de mesoescala de la variabilidad estacional e interanual de la dinámica oceánica de la porción sur de la Corriente de California.

Biografía del autor/a

Amelia De la O-Navarrete, Centro Interdisciplinario de Ciencias Marinas - IPN

Autor corresponsal: adelaon1400@alumno.ipn.mx

Citas

Acha EM, HW Mianzan, RA Guerrero, M Favero & J Bava. 2004. Marine fronts at the continental shelves of Austral South America: physical and ecological processes. Journal of Marine Systems 44(1/2): 83-105.

Acha EM, A Piola, O Iribarne & H Mianzan. 2015. Ecological processes at marine fronts: Oases in the ocean. SpringerBriefs in Environmental Science, 68 pp. Springer, Cham.

Agostini VN & A Bakun. 2002. ‘Ocean triads’ in the Mediterranean Sea: physical mechanisms potentially structuring reproductive habitat suitability (with example application to European anchovy, Engraulis encrasicolus). Fisheries Oceanography 11(3): 129-142.

Asch RG & DM Checkley. 2013. Dynamic height: A key variable for identifying the spawning habitat of small pelagic fishes. Deep-Sea Research, Part I, Oceanographic Research Papers 71: 79-91.

Bakun A. 2006. Fronts and eddies as key structures in the habitat of marine fish larvae: Opportunity, adaptive response and competitive advantage. Scientia Marina 70(S2): 105-122.

Belkin IM & P Cornillon. 2003. SST fronts of the Pacific coastal and marginal seas. Pacific Oceanography 1(2): 90-113.

Belkin IM & PC Cornillon. 2005. Bering Sea thermal fronts from pathfinder data: seasonal and interannual variability. Pacific Oceanography 3(1): 6-20.

Belkin IM & PC Cornillon. 2007. Fronts in the world ocean’s large marine ecosystems. Proceedings of the International Council on the Exploration of the Seas Annual Science Conference, 17-21 September, Helsinki. ICES CM 2007/D:21: 1-33.

Belkin IM & JE O’Reilly. 2009. An algorithm for oceanic front detection in chlorophyll and SST satellite imagery. Journal of Marine Systems 78(3): 319-326.

Bjorkstedt EP, R Goericke, S McClatchie & ED Weber. 2011. State of the California Current 2010-2011: regional variable responses to a strong (but fleeting?) La Niña. California Cooperative Oceanic Fisheries Investigations Report 52: 36-68.

Canny JF. 1986. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 8(6): 679-698.

Cayula JF& P Cornillon. 1992. Edge detection algorithm for SST images. Journal of Atmospheric and Oceanic Technology 9(1): 67-80.

Cayula JF & P Cornillon. 1995. Multi-Image edge detections for SST images. Journal of Atmospheric and Oceanic Technology 12(4): 821-829.

Durazo R. 2009. Climate and upper ocean variability off Baja California, Mexico: 1997-2008. Progress in Oceanography 83(1/4): 361-368.

Durazo R. 2015. Seasonality of the transitional region of the California Current System off Baja California. Journal of Geophysical Research, Oceans 120(2): 1173-1196.

Durazo R & TR Baumgartner. 2002. Evolution of oceanographic conditions off Baja California: 1997-1999. Progress in Oceanography 54(1-4): 7-31.

Durazo R, AM Ramírez-Manguilar, LE Miranda & LA Soto-Mardones. 2010. Climatología de variables hidrográficas. En: Gaxiola-Castro G & R Durazo (eds). Dinámica del ecosistema pelágico frente a Baja California 1997-2007, pp. 25-58. SEMARNAT, CICESE, UABC, Ciudad de México.

Durazo R, R Castro, LE Miranda, F Delgadillo-Hinojosa & A Mejía-Trejo. 2017. Anomalous hydrographic conditions off the northwestern coast of the Baja California Peninsula during 2013-2016. Ciencias Marinas 43(2): 1-12.

Etnoyer P, D Canny, B Mate & L Morgan. 2004. Persistent pelagic habitats in the Baja California to Bering Sea (B2B) ecoregion. Oceanography 17(1): 90-101.

Etnoyer P, D Canny, BR Mate, LE Morgan, JG Ortega-Ortiz & JN Wallace. 2006. Sea-surface temperature gradients across blue whale and sea turtle foraging trajectories off the Baja California Peninsula, Mexico. Deep-Sea Research, Part. II: Topical Studies in Oceanography 53(3-4): 340-358.

Franks PJS. 1992. Phytoplankton blooms at fronts: patterns, scales, and physical forcing mechanisms. Reviews in Aquatic Sciences 6(2): 121-137.

Hamilton R, YS De Mitcheson & A Aguilar-Perera. 2011. The role of local ecological knowledge in the conservation and management of reef spawning aggregations. In: De Mitcheson YS & PL Colin (eds). Reef fish spawning aggregations: biology, research and management. Fish & Fisheries Series 35: 331-370. Springer, Dordrecht.

Holloway P & JA Miller. 2015. Exploring spatial scale, autocorrelation and non stationarity of bird species richness patterns. ISPRS International Journal of Geo-Information 4(2): 783-798.

Jensen TG, I Shulman, W Hemantha, W Wijesekera, S Anderson & L Sherwin. 2018. Submesoscale features and their interaction with fronts and internal tides in a high-resolution coupled atmosphere-ocean-wave model of the Bay of Bengal. In: Pascual A (ed). Topical collection on the 48th International Liège Colloquium on Ocean Dynamics, Liège, Belgium, 23-27 May 2016. Ocean Dynamics 68: 391-410.

Kahru M, E Di Lorenzo, M Manzano-Sarabia & BG Mitchell. 2012. Spatial and temporal statistics of sea surface temperature and chlorophyll fronts in the California Current. Journal of Plankton Research 34(9): 749-760.

Krebs CJ. 2014. Estimating density: quadrants counts. Version 5. 27. In: Krebs CJ (ed). Ecological methodology, pp. 136-204. <https://www.zoology.ubc.ca/~krebs/downloads/krebs_chapter_04_2017.pdf>

Landaeta MF & LR Castro. 2006. Spawning and larval survival of the Chilean Hake Merluccius gayi under later summer conditions in the Gulf of Arauco, central Chile. Fisheries Research 77(1): 115-121.

Lynn RJ & JJ Simpson. 1987. The California Current System: The seasonal variability of its physical characteristics. Journal of Geophysical Research, Oceans 92(C12): 12947-12966.

McClatchie S, R Cowen, K Nieto, A Greer, JY Luo, C Guigand, D Demer, D Griffith & D Rudnick. 2012. Resolution of fine biological structure including small Narcomedusae across a front in the southern California Bight. Journal of Geophysical Research: Oceans 117(4): 1-18.

Nemeth RS. 2012. Ecosystem aspects of species that aggregate to spawn. In: Mitcheson YS & PL Colin (eds). Reef fish spawning aggregations: Biology, research and management. Fish & Fisheries Series 35: 20-30. Springer, Dordrecht.

Nieto K, H Demarcq & S McClatchie. 2012. Mesoscale frontal structures in the Canary Upwelling System: New front and filament detection algorithms applied to spatial and temporal patterns. Remote Sensing of Environment 123: 339-346.

Nieto K, Y Xu, SLH Teo, S McClatchie & J Holmes. 2017. How important are coastal fronts to albacore tuna (Thunnus alalunga) habitat in the Northeast Pacific Ocean? Progress in Oceanography 150: 62-71.

Olson DB & RH Backus. 1985. The concentrating of organisms at fronts: A cold-water fish and a warm-core Gulf Stream ring. Journal of Marine Research 43(1): 113-137.

Pegau WS, E Boss & A Martínez. 2002. Ocean color observations of eddies during the summer in the Gulf of California. Geophysical Research Letter 29(9): 1295. <https://doi.org/10.1029/2001GL014076>

Perez-Brunius P. 2007. Comparison of upwelling indices off Baja California derived from three different wind data sources. California Cooperative Oceanic Fisheries Investigations Reports 48: 204-214.

Roa-Pascuali L, LH Demarc & AE Nieblas. 2015. Detection of mesoscale thermal fronts from 4 km data using smoothing techniques: Gradient-based fronts classification and basin scale application. Remote Sensing of Environment 164: 225-237.

Robinson IS. 2010. The methods of satellite oceanography. In: Robinson IS (ed). Discovering the ocean from space, pp. 7-67. Springer-Verlag, Berlin.

Shulman I, B Penta, J Richman, G Jacobs, S Anderson & P Sakalaukus. 2015. Impact of submesoscale processes on dynamics of phytoplankton filaments. Journal of Geophysical Research: Oceans 120: 2050-2062.

Sinclair M. 1988. Marine populations: an essay on population regulation and speciation. Seattle, 252 pp. Washington Sea Grant Program, University of Washington Press, Seattle.

Soto-Mardones L, A Pares-Sierra, J Garcia, R Durazo & S Hormazabal. 2004. Analysis of the mesoscale structure in the IMECOCAL region (off Baja California) from Hydrographic, ADCP and Altimetry Data. Deep-Sea Research Part II: Topical Studies in Oceanography 51(6/9): 785-798. <https://doi.org/10.1016/j.dsr2.2004.05.024>

Takahashi W & H Kawamura. 2005. Detection method of the Kuroshio front using the satellite-derived chlorophyll-a images. Remote Sensing of Environment 97(1): 83-91.

Valle-Rodríguez J & A Trasviña-Castro. 2017. Poleward currents from coastal altimetry: The west coast of Southern Baja California, Mexico. Advances in Space Research 59(9): 2313-2324.

Weber ED & S McClatchie 2010. Predictive models of northern anchovy Engraulis mordax and Pacific sardine Sardinops sagax spawning habitat in the California Current. Marine Ecology Progress Series 406: 251-263.

Woodson CB & MA McManus. 2007. Foraging behavior can influence dispersal of marine organisms. Limnology and Oceanography 52(6): 2701-2709.

Xu Y, K Nieto, SLH Teo, S McClatchie & J Holmes. 2017. Influence of fronts on the spatial distribution of albacore tuna (Thunnus alalunga) in the Northeast Pacific over the past 30 years (1982-2011). Progress in Oceanography 150: 72-78.

Descargas

Publicado

2023-12-23

Cómo citar

De la O-Navarrete, A., Funes-Rodríguez, R., & Manzano-Sarabia, M. (2023). Comparación de la frecuencia y permanencia de frentes térmicos utilizando datos de diferente dimensión espacial y resolución de imágenes de satélite en la región sur de la Corriente de California: Comparison of thermal fronts frequency and permanence using data of different spatial dimensions and satellite images resolution in California Current southern region. Revista De Biología Marina Y Oceanografía, 58(3), 137–147. https://doi.org/10.22370/rbmo.2023.58.3.4260

Número

Sección

Artículo

Artículos similares

1 2 3 4 5 6 > >> 

También puede {advancedSearchLink} para este artículo.