Variability of microphytoplankton community composition in response to oceanographic drivers in the coastal upwelling area off central Chile
DOI:
https://doi.org/10.22370/rbmo.2024.59.2.4815Palabras clave:
Microphytoplankton, community composition, diatoms, dinoflagellates, upwellingResumen
In coastal upwelling areas, the microphytoplankton community comprises two main groups, diatoms and dinoflagellates. However, neither group is uniform because physical-chemical and biological interactions can affect the community structure. In this work, the composition of the microphytoplankton community was analyzed at a fixed station located in Valparaíso Bay (~32°-33°S) using the Reynolds C-S-R model. In the bay, monthly variation of the microphytoplankton community occurred due to nutrient availability (nitrate-NO3-, silicate-SiO44-, and N/Si ratio), and water temperature, driven by upwelling activity. Three main communities were observed. The first one comprised neritic R diatoms such as Asterionellopsis glacialis, Chaetoceros radicans, and Chaetoceros tortissimus from late winter to early summer (August-December), when upwelling activity occurred with the ascent of cold and nutrient-rich water. In addition, dinoflagellates such as Protoperidinium brochii, Protoperidinium pellucidum, and Preperidinium meunieri were identified as part of this community. Secondly, S/R-S dinoflagellates such as Tripos furca var. berghii, Ceratium tripos f. tripodioides, Prorocentrum gracile, and Protoperidinium steinii were predominant under thermal stratification conditions from summer to autumn (January-April) together with C-R pennate diatoms such as Navicula sp. and Thalassionema nitzschioides. Finally, a community including neritic R-C/R diatoms such as Leptocylindrus danicus, Guinardia delicatula, Detonula pumila, Pseudo-nitzschia australis, Skeletonema costatum, Thalassiosira mendiolana, and Chaetoceros sp. was present throughout the year with no remarkable connection to any oceanographic conditions. Although upwelling activity constitutes the main driver of microphytoplankton community succession in the bay, biological interactions appear to play also a role, being necessary a deeper study under an ecological perspective.
Key words: Microphytoplankton, community composition, diatoms, dinoflagellates, upwelling
Citas
Alves de Souza C, MT González & JL Iriarte. 2008a. Functional groups in marine phytoplankton assemblages dominated by diatoms in fjords of southern Chile. Journal of Plankton Research 30(11): 1233-1243.
Alves de Souza C, D Varela, F Navarrete, P Fernández & P Leal. 2008b. Distribution, abundance and diversity of modern dinoflagellate cyst assemblages from southern Chile (43-54ºS). Botanica Marina 51: 399-410.
Anabalón V, CE Morales, RH Escribano & MA Varas. 2007. The contribution of nano- and micro-planktonic assemblages in the surface layer (0-30 m) under different hydrographic conditions in the upwelling area off Concepción, central Chile. Progress in Oceanography 75: 396-414.
Anabalón V, CE Morales, HE González, E Menschel, W Schneider, S Hormazabal, L Valencia & R Escribano. 2016. Micro-phytoplankton community structure in the coastal upwelling zone off Concepción (central Chile): Annual and inter-annual fluctuations in a highly dynamic environment. Progress in Oceanography 149: 174-188.
Aparicio-Rizzo P & I Masotti. 2019. Inter-annual variability of oceanographic conditions and phytoplankton in Valparaíso Bay (~33°S), central Chile. Revista de Biología Marina y Oceanografía 54(1): 70-81.
Aparicio-Rizzo P, I Masotti & MF Landaeta. 2020. Influence of coastal upwelling on micro-phytoplankton variability at Valparaíso Bay (33ºS), Central Chile. Revista de Biología Marina y Oceanografía 55: 11-25.
Arandia-Gorostidi N, AK Krabberød, R Logares, IM Deutschmann, R Scharek, XAG Morán, F González & L Alonso-Sáez. 2022. Novel interactions between phytoplankton and bacteria shape microbial seasonal dynamics in coastal ocean waters. Frontiers in Marine Science 9: 901201.
Assmy P & V Smetacek. 2009. Algal blooms. In: Schaechter M (ed). Encyclopedia of Microbiology, pp. 27-41. Elsevier, Oxford.
Avaria S. 1965. Diatomeas y silicoflagelados de la Bahía de Valparaíso. Revista de Biología Marina 12(1/3): 61-120.
Avaria S. 1971. Variaciones mensuales del fitoplancton de la bahía de Valparaíso, entre julio de 1963 y julio de 1966. Revista de Biología Marina 14(3): 15-43.
Avaria S & E Orellana. 1975. Estudios de ecología fitoplanctónica en la Bahía de Valparaíso. III. Fitoplancton 1972-73. Revista de Biología Marina 15(3): 207-226.
Avaria S, S Palma, H Sievers & N Silva. 1989. Review of the oceanographic, chemical and planktological aspects of the Valparaíso Bay and adjacents areas. Biología Pesquera 18: 67-96.
Bakun A. 1973. Coastal upwelling indexes, west coast of North America, 1946-71. NOAA Technical Report NMFS SSRF 671: 1-103.
Casas B, M Varela & A Bode. 1999. Seasonal succession of phytoplankton species on the coast of A Coruña (Galicia, northwest Spain). Boletín Instituto Español de Oceanografía 15(1-4): 413-429.
Daneri G, V Dellarossa, R Quiñones, B Jacob, P Montero & O Ulloa. 2000. Primary production and community respiration in the Humboldt Current System off Chile and associated oceanic areas. Marine Ecology Progress Series 197: 41-49.
Du X & WT Peterson. 2014. Seasonal cycle of phytoplankton community composition in the coastal upwelling system off central Oregon in 2009. Estuaries and Coasts 37: 299-311.
Flynn KJ, A Mitra, WH Wilson, SA Kimmance, DR Clark, A Pelusi & L Polimene. 2022. ‘Boom-and-busted’ dynamics of phytoplankton–virus interactions explain the paradox of the plankton. New Phytologist 234: 990-1002.
González H, E Menschel, C Aparicio & C Barría. 2007. Spatial and temporal variability of microplankton and detritus, and their export to the shelf sediments in the upwelling area off Concepción, Chile (~36ºS), during 2002-2005. Progress in Oceanography 75: 435-451.
Guiry MD & GM Guiry. 2024. AlgaeBase. World-wide electronic publication, University of Galway. <https://www.algaebase.org>
Iriarte I, CA Vargas, FJ Tapia, R Bermúdez & RE Urrutia. 2012. Primary production and plankton carbon biomass in a river-influenced upwelling area off Concepción, Chile. Progress in Oceanography 92-95: 97-109.
Kiørbe T. 1993. Turbulence, phytoplankton cell size, and the structure of pelagic food webs. Advances in Marine Biology 29: 1-72.
Kiørboe T, C Lundsgaard, M Olesen & JLS Hansen. 1994. Aggregation and sedimentation processes during a spring phytoplankton bloom: A field experiment to test coagulation theory. Journal of Marine Research 52: 297-323.
Le Reun N, A Bramucci, J O’Brien, M Ostrowski, MV Brown, J Van de Kamp, L Bodrossy, J-B Raina, P Ajani & J Seymour. 2022. Diatom biogeography, temporal dynamics, and links to bacterioplankton across seven oceanographic time-series sites spanning the Australian continent. Microorganisms 10(338): 1-18. <https://doi.org/10.3390/microorganisms10020338>
Mann DG. 1999. The species concept in diatoms. Phycologia 38(6): 437-495.
Margalef R. 1978. Phytoplankton communities in upwelling areas. The example of NW Africa. Oecologia Aquatica 3: 97-132.
Montecino V, R Astoreca, G Alarcón, L Retamal & G Pizarro. 2004. Bio-optical characteristics and primary productivity during upwelling and non-upwelling conditions in a highly productive coastal ecosystem off central Chile (36°S). Deep-Sea Research Part II 51(20-21): 2413-2426.
Ochoa N, MH Taylor, S Purca & E Ramos. 2010. Intra- and interannual variability of nearshore phytoplankton biovolume and community changes in the northern Humboldt Current system. Journal of Plankton Research 32(6): 843-855.
Pitcher GC, DR Walker, BA Mitchell-Innes & CL Moloney. 1991. Short-term variability during an anchor station study in the southern Benguela upwelling system: Phytoplankton dynamics. Progress in Oceanography 28: 39-64.
Reynolds CS. 1988. Functional morphology and the adaptive strategies of freshwater phytoplankton. In: Sandgren CD (ed). Growth and reproductive strategies of freshwater phytoplankton, pp. 388-433. Cambridge University Press, Cambridge.
Reynolds CS. 2006. Ecology of phytoplankton, 535 pp. Cambridge University Press.
Reynolds CS, V Huszar, C Kruk, L Naselli-Flores & S Melo. 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417-428.
Rodríguez L, R Escribano, G Grone, C Irribarren & H Castro. 1996. Ecología del fitoplancton en la bahía de Antofagasta (23°S), Chile. Revista de Biología Marina 31(2): 65-80.
Silva A, S Palma, PB Oliveira & MT Moita. 2009. Composition and interannual variability of phytoplankton in a coastal upwelling region (Lisbon Bay, Portugal). Journal of Sea Research 62: 238-249.
Smayda TJ. 2002. Turbulence, watermass stratification and harmful algal blooms: an alternative view and frontal zones as “pelagic seed banks”. Harmful Algae 1: 95-112.
Smayda TJ & CS Reynolds. 2001. Community assembly in marine phytoplankton: application of recent models to harmful dinoflagellate blooms. Journal of Plankton Research 23(5): 447-461.
Tomas C. 1997. Identifying marine phytoplankton, 858 pp. Academic Press, San Diego, 858 pp.
Utermöhl H. 1958. Zur Vervollkommung der quantitativen Phytoplankton-Methodik. Mitteilungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 9: 1-38.
Wang Y, JH Kang, YY Ye, GM Lin, QL Yang & M Lin. 2016. Phytoplankton community and environmental correlates in a coastal upwelling zone along western Taiwan Strait. Journal of Marine Systems 154: 252-263. <http://dx.doi.org/10.1016/j.jmarsys.2015.10.015>
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Italo Masotti, Pilar Aparicio-Rizzo

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
• Los autores que publican en la RBMO transfieren sus derechos de publicación a la Universidad de Valparaíso, conservando los derechos de propiedad intelectual para difundir ampliamente el artículo y la revista en cualquier formato.
• La RBMO autoriza el uso de figuras, tablas y extractos breves de su colección de manuscritos, en trabajos científicos y educacionales, siempre que se incluya la fuente de información.