Reductionism in Quantum Mechanics: The Classical Limit in Alternative Formalisms

Authors

  • Javier Berjón de Gortari Instituto de Investigaciones Filosóficas, Universidad Nacional Autónoma de México
  • Elias Okon Universidad Nacional Autónoma de México

DOI:

https://doi.org/10.22370/rhv2024iss25pp57-74

Keywords:

quantum mechanics, philosophy of science, philosophy of physics, classical limit, foundations of quantum mechanics

Abstract

The classical limit problem refers to how the classical or Newtonian dynamics can be recovered from the principles of quantum mechanics. In other words the problem is how to reduce classical physics to quantum theory. It is commonplace to find in popular quantum mechanics texts that the problem is solved, nevertheless here we present a critique of these supposed solutions to the problem and we show why they are not really satisfactory. What we propose is to approach the problem from the alternative theories to the standard quantum formalism; in particular from the pilot-wave theory and also GRW (with mass density). Both theories are better equipped to deal with the classical limit problem because they have a clear and precise ontology, which makes it easier to link their theoretical elements to the world of experience. This notwithstanding, there still remain some obstacles to overcome for said theories and here we propose how a general solution to this should look like.

References

Allori, V., Goldstein, S., Dürr, D., Zanghi, N. (2002). Seven steps toward the classical world. J. Opt. B, 4, 482-88. https://doi.org/10.1088/1464-4266/4/4/344

Allori, V., Goldstein, S., Tumulka, R., Zanghi, N. (2008). On the Common Structure of Bohmian Mechanics and the Ghirardi–Rimini–Weber Theory. British Journal for the Philosophy of Science, 59, 353-89. https://doi.org/10.1093/bjps/axn012

Allori, V., Goldstein, S., Tumulka, R., Zanghi, N. (2011). Many-Worlds and Schrödinger’s First Quantum Theory. The British Journal for the Philosophy of Science, 62(1), 1-27. https://doi.org/10.1093/bjps/axp053

Ballentine, L. (1988). Quantum Mechanics. A Modern Development. World Scientific Publishing.

Ballentine, L., Yang, Y., Zibin, J. (1994). Inadequacy of Ehrenfest’s theorem to characterize the classical regime. Phys. Rev. A, 50, 2854. https://doi.org/10.1103/PhysRevA.50.2854

Bell, J. (1990). Against ‘measurement’. Physics World, 3(8), 33-40. https://doi.org/10.1088/2058-7058/3/8/26

Bohm, D. (1952). A suggested interpretation of the quantum theory in terms of ‘hidden’ variables: Part I. Phys. Rev. 85, 166-179. https://doi.org/10.1103/PhysRev.85.166

Bohm, D. (1952). A suggested interpretation of the quantum theory in terms of ‘hidden’ variables: Part II. Phys. Rev., 85, 180-193. https://doi.org/10.1103/PhysRev.85.180

Bohm, D., Hiley, B. (1995). The Undivided Universe. Routledge.

Bokulich, A. (2008). Reexamining the Quantum-Classical Relation: Beyond Reductionism and Pluralism. Cambridge University Press. https://doi.org/10.1017/CBO9780511751813

Ghirardi, G., Rimini, A., Weber, T. (1986). Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D., 34, 470. https://doi.org/10.1103/PhysRevD.34.470

Ghirardi, G., Grassi, R., Benatti, F. (1995). Describing the Macroscopic World: Closing the Circle within the Dynamical Reduction Program. Foundations of Physics, 25(1), 5-38. https://doi.org/10.1007/BF02054655

Griffiths, D. (2005). Introduction to Quantum Mechanics. Pearson.

Holland, P. (1993). The Quantum Theory of Motion. Cambridge University Press.

Jammer, M. (1966). The Conceptual Development of Quantum Mechanics. McGraw Hill Book Co. https://doi.org/10.1063/1.3034186

Liboff, R. (1984). The correspondence principle revisited. Physics Today, 37, 50-55. https://doi.org/10.1063/1.2916084

Manero, J. (2019). Imprints of the underlying structure of physical theories. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics., 68, 71-89. https://doi.org/10.1016/j.shpsb.2019.06.005

Maudlin, T. (1995). Three measurement problems. Topoi, 14, 7-15. https://doi.org/10.1007/BF00763473

Maudlin, T. (2010). Can the world be only wavefunction?. En S. Saunders, J. Barrett, A. Kent, D. Wallace (Eds.), Many Worlds. Everett, Quantum Theory and Reality, pp. 121-144. Oxford University Press.

McQueen, K.J. (2015). Four Tails Problems for Dynamical Collapse Theories. Studies in the History and Philosophy of Modern Physics, 49, 10-18. https://doi.org/10.1016/j.shpsb.2014.12.001

Messiah, A. (1999). Quantum Mechanics. Dover Publications.

Nagel, E. (1949). The Meaning of Reduction in the Natural Sciences. En C. Stauffer (Ed.), Science and Civilization, pp. 97-135. University of Wisconsin Press.

Nagel, E. (2008). Issues in the Logic of Reductive Explanations. En M. Bedau, P. Humphreys (Eds.), Emergence: Contemporary Readings in Philosophy and Science, pp. 359-375. MIT Press.

Okon, E. (2014). El problema de la medición en mecánica cuántica. Rev. Mex. Fis. E, 60(2).

Rosaler, J. (2015). ‘Formal’ versus ‘Empirical’ Approaches to Quantum-Classical Reduction. Topoi, 34(2), 325-38. https://doi.org/10.1007/s11245-015-9328-1

Rosenfeld, L. (1979). The Wave-Particle Dilemma. En R. Cohen, J. Stachel (Eds.), Selected Papers of Léon Rosenfeld, Boston Studies in the Philosophy of Science, pp. 688-703. Springer. https://doi.org/10.1007/978-94-009-9349-5_49

Sakurai, J. (1994). Modern Quantum Mechanics. Addison-Wesley.

Published

2024-07-25

How to Cite

Berjón de Gortari, J., & Okon, E. (2024). Reductionism in Quantum Mechanics: The Classical Limit in Alternative Formalisms. Revista De Humanidades De Valparaíso, (25), 57–74. https://doi.org/10.22370/rhv2024iss25pp57-74

Issue

Section

Monographic Section