Intertheoretical reduction in physics: a pluralistic approach

Authors

  • Patricia Palacios Salzburg

DOI:

https://doi.org/10.22370/rhv2024iss25pp29-55

Keywords:

reductionism, models, pluralism, physics, intertheoretical

Abstract

I present and defend in this paper a pluralistic approach to intertheoretical reduction. In this, reduction is understood as a family of models that can help to achieve certain epistemic and ontological goals. I will then argue that the reductive model (or combination of models) that is best suited to a particular case study will depend on the specific goals that motivate reduction in that case.

References

Anderson, P. W. (1972). More is different. Science, 177(4047), 393–396.

Balzer, W., Moulines, C. U., & Sneed, J. D. (1987). An architectonic for science: The structuralist program. Springer Science & Business Media.

Batterman, R. W. (2001). The devil in the details: Asymptotic reasoning in explanation, reduction, and emergence. Oxford University Press.

Blackmore, J. T. (1995). Ludwig Boltzmann: His Later Life and Philosophy, 1900-1906: Book Two: The Philosopher. Springer Science & Business Media.

Boltzmann, L. (1877). Über die Beziehung zwischen dem zweiten Hauptsatze des mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung, respective den Sätzen über das Wärmegleichgewicht. Sitzungsbericht der Akadamie der Wissenschaften, Wien, II, 67–73.

Boltzmann, L. (1885). Über die möglichkeit der begründung einer kinetischen gastheorie auf anziehende kräfte allein. Annalen der Physik, 260(1), 37–44.

Brush, S. G. (2006). Ludwig Boltzmann and the foundations of natural science. En I.M. Fasol-Boltzmann & G.L. Fasol (Eds.), Ludwig Boltzmann (1844–1906) (pp. 65–80). Springer.

Butterfield, J. (2011a). Emergence, reduction and supervenience: A varied landscape. Foundations of Physics, 41(6), 920–959. https://doi.org/10.1007/s10701-011-9549-0

Butterfield, J. (2011). Less is different: emergence and reduction reconciled. Foundations of Physics, 41(6), 1065-1135. https://doi.org/10.1007/s10701-010-9516-1

Callen, H. B., & Kestin, J. (1960). An Introduction to the Physical Theories of Equilibrium Thermostatics and Irreversible Thermodynamics. Journal of Applied Mechanics, 27(3), 599-600. https://doi.org/10.1115/1.3644060

Casetti, L., & Kastner, M. (2006). Nonanalyticities of Entropy Functions of Finite and Infinite Systems. Physical Review Letters, 97(10), 100602. https://doi.org/10.1103/PhysRevLett.97.100602

Dauxois, T., Latora, V., Rapisarda, A., Ruffo, S., & Torcini, A. (2002). The Hamiltonian Mean Field Model: From Dynamics to Statistical Mechanics and Back. En T. Dauxois, S. Ruffo, E. Arimondo, & M. Wilkens (Eds.), Dynamics and Thermodynamics of Systems with Long-Range Interactions (pp. 458-487). Springer. https://doi.org/10.1007/3-540-45835-2_16

Dizadji-Bahmani, F., Frigg, R., & Hartmann, S. (2010). Who’s Afraid of Nagelian Reduction? Erkenntnis, 73(3), 393-412. https://doi.org/10.1007/s10670-010-9239-x

Einstein, A. (1910). Theorie der opaleszenz von homogenen flüssigkeiten und flüssigkeitsgeminschen in der nähe des kritischen zustandes. Annalen der Physik, 338(16), 1275–1298.

Feinzeig, B. H. (2020). The classical limit as an approximation. Philosophy of Science (forthcoming).

Feintzeig, B. H. (2022). Reductive Explanation and the Construction of Quantum Theories. The British Journal for the Philosophy of Science, 73(2), 457-486. https://doi.org/10.1093/bjps/axz051

Feyerabend, P. K. (1962). Explanation, reduction, and empiricism.

letcher, S. C. (2016). Similarity, topology and physical significance in relativity theory. The British Journal for the Philosophy of Science, 67(2), 365-389.

Fletcher, S. C. (2019). On The Reduction of General Relativity to Newtonian Gravitation. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 68, 1–15. https://doi.org/10.1016/j.shpsb.2019.04.005

Fletcher, S. C. (2020). Similarity Structure and Emergent Properties. Philosophy of Science, 87(2), 281-301. https://doi.org/10.1086/707563

Frigg, R. (2008). A Field Guide to Recent Work on the Foundations of Statistical Mechanics. En D. Rickles (Ed.), The Ashgate Companion to Contemporary Philosophy of Physics (pp. 99-196). Ashgate.

Greene, R. F. & Callen, H. B. (1951). On the formalism of thermodynamic fluctuation theory. Physical Review, 83(6), 1231.

Gross, D. (2001a). Second law of thermodynamics, macroscopic observables within boltzmann’s principle but without thermodynamic limit.

Gross, D. H. (2001b). Microcanonical thermodynamics: phase transitions in “small” systems. World Scientific.

Gross, D. H. E. (2002). Thermo-statistics or Topology of the Microcanonical Entropy Surface. En T. Dauxois, S. Ruffo, E. Arimondo, & M. Wilkens (Eds.), Dynamics and Thermodynamics of Systems with Long-Range Interactions (pp. 23-44). Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-45835-2_2

Kemeny, J. G. & P. Oppenheim (1956). On reduction. Philosophical Studies: An International Journal for Philosophy in the Analytic Tradition, 7(1/2), 6–19.

Kim, J. (1998). Mind in a Physical World: An Essay on the Mind-Body Problem and Mental Causation. MIT press.

Kitcher, P. (1984). 1953 and all that. A tale of two sciences. The Philosophical Review, 93(3), 335–373.

Klein, M. J. (1973). The Development of Boltzmann’s Statistical Ideas. En E. G. D. Cohen & W. Thirring (Eds.), The Boltzmann Equation (pp. 53-106). Springer. https://doi.org/10.1007/978-3-7091-8336-6_4

Landsman, N. P. (2006). Between classical and quantum. En J. Butterfield & J. Earman (Eds.), Handbook of the Philosophy of Science (pp. 417-553). Elsevier.

Landsman, K. (2017). Foundations of Quantum Theory: From Classical Concepts to Operator Algebras. Springer. https://doi.org/10.1007/978-3-319-51777-3

Loschmidt, J. (1876). Über den Zustand des Wärmegleichgewichtes eines Systems von Körpern. Akademie der Wissenschaften, Wien. Mathematisch-Naturwissenschaftliche Klasse, Sitzungsberichte, 73, 128–135.

Mainwood, P. (2006). Phase transitions in finite systems. [Ph. D. thesis]. University of Oxford.

Mishin, Y. (2015). Thermodynamic theory of equilibrium fluctuations. Annals of Physics, 363, 48–97.

Moulines, C. U. (1980). Intertheoretic Approximation: The Kepler-Newton Case. Synthese, 45(3), 387–412.

Moulines, C. U. (1984). Ontological Reduction in the Natural Sciences (1). En W. Balzer, D. A. Pearce, & H.-J. Schmidt (Eds.), Reduction in Science (pp. 51-70). Springer. https://doi.org/10.1007/978-94-009-6454-9_5

Nagel, E. (1949). The meaning of reduction in the natural sciences. En R. Stauffer (Ed.), Science and Civilization.

Nagel, E. (1961). The structure of science: Problems in the logic of scientific explanation. Hackett.

Nagel, E. (1970). Issues in the logic of reductive explanations. En H. K. Munitz (Ed.), Mind, science and history (pp. 117–137). SUNY Press.

Nickles, T. (1973). Two Concepts of Intertheoretic Reduction. The Journal of Philosophy, 70(7), 181–201.

Palacios, P. (2019). Phase Transitions: A Challenge for Intertheoretic Reduction? Philosophy of Science, 86(4), 612–640. https://doi.org/10.1086/704974

Poincaré, H. (1889). Sur les tentatives d’explication m’ecanique des principes de la thermodynamique. Comptes Rendus de l’Academie des Sciences, 108, 550–553.

Rau, J. (2017). Statistical physics and thermodynamics: an introduction to key concepts. Oxford University Press.

Rosaler, J. (2015). Local reduction in physics. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 50, 54-69.

Rosaler, J. (2019). Reduction as an a posteriori Relation. The British Journal for the Philosophy of Science, 70(1), 269-299. https://doi.org/10.1093/bjps/axx026

Sarkar, S. (2015). Nagel on reduction. Studies in History and Philosophy of Science Part A, 53, 43–56.

Schaffner, K. F. (1967). Approaches to reduction. Philosophy of Science, 34(2), 137–147.

Schaffner, K. F. (1977). Reduction, reductionism, values, and progress in the biomedical sciences. Logic, laws, and life, 6, 143–171.

Schaffner, K. F. (2012). Ernest Nagel and reduction. The Journal of Philosophy, 109(8/9), 534–565.

Scheibe, E. (1997). Die Reduktion physikalischer Theorien: Ein Beitrag zur Einheit der Physik. Springer.

Shech, E. (2013). What Is the Paradox of Phase Transitions? Philosophy of Science, 80(5), 1170-1181. https://doi.org/10.1086/674000

Sklar, L. (1995). Philosophical Issues in the Foundations of Statistical Mechanics. Cambridge University Press.

Sneed, J. D. (1971). The logical structure of mathematical physics. Dordrecht.

Suppe, F. (1974). The structure of scientific theories. University of Illinois Press.

Tisza, L. & Quay, P. M. (1963). The statistical thermodynamics of equilibrium. Annals of Physics, 25(1), 48–90.

Torretti, R. (1990). Creative Understanding. University of Chicago Press.

Van Riel, R. (2011). Nagelian Reduction beyond the Nagel Model. Philosophy of Science, 78(3), 353-375. https://doi.org/10.1086/660300

Worrall, J. (1989). Structural realism: The best of both worlds? Dialectica, 43(1-2), 99 124.

Zermelo, E. (1896). Ueber mechanische Erklärungen irreversibler Vorgänge. Eine Antwort auf Hrn. Boltzmann’s “Entgegnung”. Annalen der Physik, 295(12), 793–801.

Published

2024-07-25 — Updated on 2024-07-26

Versions

How to Cite

Palacios, P. (2024). Intertheoretical reduction in physics: a pluralistic approach. Revista De Humanidades De Valparaíso, (25), 29–55. https://doi.org/10.22370/rhv2024iss25pp29-55 (Original work published July 25, 2024)

Issue

Section

Monographic Section