Attraction Basins and Unlimited Semiosis

Miguel Fuentes Rebolledo


This paper argues in favor of the ambiguity in the interpretive process and mechanisms that can lead to stop the so-called unlimited semiosis. As we shall see, our way of approaching the problem can be used in other contexts, and the resulting conclusions can be applied to text, artwork, spoken messages, and to any sign to be interpreted.


interpretation; unlimited semiosis; stochastic processes; conceptual basin; attractors


ECO, U. (1992). Los límites de la interpretación. Barcelona: Editorial Lumen.

DRETSKE, F. (1982). Knowledge and the Flow of Information. Cambridge, Massachusetts: The MIT Press.

GARDENFORS, P. (2000). Conceptual Spaces. The Geometry of Thought. Cambridge, Massachusetts: The MIT Press.

GENDE, C.E. (2010). Problemas filosóficos de la interpretación: del lenguaje de los interpretantes al lenguaje del intérprete. Seminario de Posgrado. Neuquén: Universidad Nacional del Comahue.

PERLOVSKY, L. (2001). Neural Networks and Intellect: Using Model-Based Concepts. Oxford: Oxford University Press.

FUENTES, M.A. & MIGUEL, H. (2013). “Self Generated Dynamic Landscape”, en Physica A 392: 2492-2497.

FUENTES et al. (2014). “Frontier in Computational Neuroscience. Stochastic model predicts evolving preferences in the Iowa gambling task”, en Frontiers in Computational Neuroscience 5: 167.


Copyright (c) 2016 Humanities Journal of Valparaiso

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.