Comparative analysis of spatiotemporal trends in sea surface temperature in the major marine protected areas of the Eastern Tropical Pacific

Análisis comparativo de las tendencias espaciotemporales en la temperatura superficial del mar en las principales áreas marinas protegidas del Pacífico Oriental Tropical

Autores/as

DOI:

https://doi.org/10.22370/rbmo.2023.58.1.4145

Palabras clave:

Remote sensing, Eastern Tropical Pacific, SST, marine protected areas, climate change

Resumen

The Eastern Tropical Pacific (ETP) is characterized by complex oceanographic dynamics that affect the regional sea surface temperature (SST), a key parameter driving marine ecosystems. To date no comparative studies have been conducted on the spatial and temporal variations of SST among the several marine protected areas in the ETP. The present study used remote sensing to evaluate the monthly, annual, and decadal variations in SST from 1982 to 2019 in Coiba National Park (Coiba), Cocos Island National Park (Cocos), Malpelo Fauna and Flora Sanctuary (Malpelo), Gorgona Island National Park (Gorgona), Galápagos Marine Reserve (Galápagos) and La Plata Island (La Plata). An overall increasing trend in SST was observed across all study sites, except for West Galápagos. A decrease in SST anomaly was observed from February through April at Malpelo, Coiba, Gorgona and La Plata. These observations are likely in response to the Humboldt Current and upwelling events in the Colombian Pacific Basin. Using a longer SST dataset is recommended to determine if the annual, monthly and decadal trends observed here are driven by local, regional or global processes. Consistent monitoring of SST trends is a strategic practice in understanding and planning for current and projected changes in the marine environment.

Biografía del autor/a

César Peñaherrera-Palma, MigraMar

Corresponding author: crpenaherrera@gmail.com

Citas

Allison EH, AL Perry, M-C Badjeck, W Neil Adger, K Brown, D Conway, AS Halls, GM Pilling, JD Reynolds, NL Andrew & NK Dulvy. 2009. Vulnerability of national economies to the impacts of climate change on fisheries. Fish and Fisheries 10(2): 173-196.

Amador J, E Rivera, A Durán-Quesada, G Mora, F Sáenz, B Calderón & N Mora. 2016. The easternmost tropical Pacific. Part I: A climate review. Revista de Biología Tropical 64: S1-S22.

Bazon V, T Smith, T Chin, C Liu & W Hankins. 2016. A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring modeling and environmental studies. Earth System Science Data 8: 165-176.

Belkin I. 2009. Rapid warming of large marine ecosystems. Progress in Oceanography 81(1-4): 207-213.

Belkin I & P Cornillon. 2003. SST fronts of the Pacific coastal and marginal seas. Pacific Oceanography 1(2): 90-113.

Block BA, ID Jonsen, SJ Jorgensen, AJ Winship, SA Shaffer, SJ Bograd, EL Hazen, DG Foley, GA Breed, AL Harrison, JE Ganong, A Swithenbank, M Castleton, H Dewar, BR Mate, GL Shillinger, KM Schaefer, SR Benson, MJ Weise, RW Henry & DP Costa. 2011. Tracking apex marine predator movements in a dynamic ocean. Nature 475(7354): 86-90.

Bravo-Ormaza E, R Arauz, S Bessudo, A Hearn, AP Klimley, F Ladino-Archila, J López-Macías, T Steiner & C Peñaherrera-Palma. 2023. Scalloped hammerhead shark Sphyrna lewini relative abundance comparison in three offshore marine protected areas of the eastern tropical Pacific. Environmental Biology of Fishes 106: 1767-1784.

Bruno JF, AE Bates, C Cacciapaglia, EP Pike, SC Amstrup, R van Hooidonk, SA Henson & RB Aronson. 2018. Climate change threatens the world’s marine protected areas. Nature Climate Change 8: 499-503.

Bucaram SJ, A Hearn, AM Trujillo, W Rentería, RH Bustamante, G Morán, G Reck & JL García. 2018. Assessing fishing effects inside and outside an MPA: The impact of the Galapagos Marine Reserve on the industrial pelagic tuna fisheries during the first decade of operation. Marine Policy 87: 212-225.

Carvalho KS & S Wang. 2020. Sea surface temperature variability in the Arctic Ocean and its marginal seas in a changing climate: Patterns and mechanisms. Global and Planetary Change 193: 103265. <https://doi.org/10.1016/j.gloplacha.2020.103265>

Chelton DB, SK Esbensen, MG Schlax, N Thum, MH Freilich, FJ Wentz, CL Gentemann, MJ McPhaden & PS Schopf. 2001. Observations of coupling between surface wind stress and sea surface temperature in the eastern tropical Pacific. Journal of Climate 14(7): 1479-1498.

Chikamoto Y, T Mochizuki, A Timmermann, M Kimoto & M Watanabe. 2016. Potential tropical Atlantic impacts on Pacific decadal climate trends. Geophysical Research Letters 43(13): 7143-7151.

Coats S & K Karnauskas. 2017. Are simulated and observed twentieth century tropical Pacific sea surface temperature trends significant relative to internal variability? Geophysical Research Letters 44(19): 9928-9937.

Deser C, A Phillips & M Alexander. 2010. Twentieth century tropical sea surface temperature trends revisited. Geophysical Research Letters 37: 1-6.

Dong L & T Zhou. 2014. The formation of the recent cooling in the eastern tropical Pacific Ocean and the associated climate impacts: A competition of global warming, IPO, and AMO. Journal of Geophysical Research: Atmospheres 119(19): 11272-11287.

Dufour F, H Arrizabalaga, X Irigoien & J Santiago. 2010. Climate impacts on albacore and bluefin tunas migrations phenology and spatial distribution. Progress in Oceanography 86(1): 283-290.

Fiedler P. 1992. Seasonal climatologies and variability of eastern tropical Pacific surface waters, 70 pp. NOAA, La Jolla.

Fiedler P & M Lavín. 2006. Introduction: A review of eastern tropical Pacific oceanography. Progress in Oceanography 69(2): 94-100.

Fiedler P & M Lavín. 2017. Oceanographic conditions of the eastern tropical Pacific. In: Glynn P, D Manzello & I Enochs (eds). Coral reefs of the eastern tropical Pacific: Persistence and loss in a dynamic environment, pp. 59-83. Springer Netherlands, Miami.

Fiedler P & LD Talley. 2006. Hydrography of the eastern tropical Pacific: A review. Progress in Oceanography 69(2): 143-180.

Figueiredo J, A Baird, S Harii & SR Connolly. 2014. Increased local retention of reef coral larvae as a result of ocean warming. Nature Climate Change 4: 498-502.

Forryan A, A Naveira, C Vic, AJ George & A Hearn. 2021. Galápagos upwelling driven by localized wind-front interactions. Scientific Reports 11: 1277 <https://doi.org/10.1038/s41598-020-80609-2>

Gulak SJB, AJ de Ron Santiago & JK Carlson. 2015. Hooking mortality of scalloped hammerhead Sphyrna lewini and great hammerhead Sphyrna mokarran sharks caught on bottom longlines. African Journal of Marine Science 37(2): 267-273.

Hamed KH & AR Rao. 1998. A modified Mann-Kendall trend test for autocorrelated data. Journal of Hydrology 204: 182-196.

Hazen EL, S Jorgensen, RR Rykaczewski, SJ Bograd, DG Foley, ID Jonsen, SA Shaffer, JP Dunne, DP Costa, LB Crowder & BA Block. 2012. Predicted habitat shifts of Pacific top predators in a changing climate. Nature Climate Change 3(3): 234-238.

Hearn A, E Utreras & S Henderson. 2010. Informe sobre el estado de los tiburones del Pacífico Este Tropical, 32 pp. Conservación Internacional, Quito.

Hearn A, D Acuña, JT Ketchum, C Peñaherrera-Palma, J Green, A Marshall, M Guerrero & G Shillinger. 2014. Elasmobranchs of the Galapagos Marine Reserve. In: Denkinger J & L Vinueza (eds). Galapagos Marine Reserve: A dynamic socio-ecological system, pp. 23-59. Springer International Publishing, New York.

Heron SF, JA Maynard, R van Hooidonk & CM Eakin. 2016. Warming trends and bleaching stress of the world’s coral reefs 1985-2012. Scientific Reports 6(1): 38402.

Ho C-H, H-J Lu, J-S He, K-W Lan & J-L Chen. 2016. Changes in patterns of seasonality shown by migratory fish under global warming: Evidence from catch data of Taiwan’s coastal fisheries. Sustainability 8(3): 1-13.

Huang B, C Liu, VF Banzon, E Freeman, G Graham, B Hankins, T Smith & H-M Zhang. 2020. NOAA 0.25-degree Daily Optimum Interpolation Sea Surface Temperature (OISST), Version 2.1. NOAA National Center for Environmental Information. <https://doi.org/10.25921/RE9P-PT57>

Huete T. 2016. Efectos de la temperatura en las bacterias heterotróficas marinas de un sistema costero templado. Tesis Doctoral, Universidad de Oviedo, Oviedo, 164 pp. <http://hdl.handle.net/10651/40755>

IPCC. 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 2391 pp. Cambridge University Press, Cambridge.

Jimenez G, JE Cole, DM Thompson & AW Tudhope. 2018. Northern Galápagos corals reveal twentieth century warming in the eastern tropical Pacific. Geophysical Research Letters 45(4): 1981-1988.

Jiménez J. 2016. El Domo térmico de Costa Rica: Un oasis de productividad frente a las costas del Pacífico Centroamericano, 55 pp. Fundación MarViva, San José.

Karnauskas K, R Seager, A Kaplan, Y Kushnir & M Cane. 2009. Observed strengthening of the zonal sea surface temperature gradient across the equatorial Pacific Ocean. Journal of Climate 22: 4316-4321.

Karnauskas K, S Jenouvrier, C Brown & R Murtugudde. 2015. Strong sea surface cooling in the eastern equatorial Pacific and implications for Galápagos Penguin conservation. Geophysical Research Letters 42: 6432-6437.

Kashkooli O, M Ghadami, M Amini & R Modarres. 2019. Spatiotemporal variation of the southern Caspian sea surface temperature during 1982-2016. Journal of Marine Systems 192: 126-136.

Kendall MG, A Stuart & JK Ord. 1983. The advanced theory of statistics. Volumen 3: Desing and analysis, and time series, 780 pp. Charles Griffin, London.

Kumar S & N O’Brien. 2021. modifiedmk: Modified versions of Mann Kendall and Spearman's Rho trend tests (Version 1.6): CRAN. <https://cran.r-project.org/web/packages/modifiedmk/modifiedmk.pdf>

Lehodey P. 2000. Impacts of the El Niño Southern Oscillation on tuna populations and fisheries in the tropical Pacific Ocean, 32 pp. Standing Committee on Tuna and Billfish, Noumea.

Levitus S, J Antonov & T Boyer. 2005. Warming of the world ocean, 1955-2003. Geophysical Research Letters 32(2): 1-4.

Lian T, D Chen, J Ying, P Huang & Y Tang. 2018. Tropical Pacific trends under global warming: El Niño-like or La Niña-like? National Science Review 5(6): 810-812.

McGregor S, M Stueckerm, J Kajtar, M Inglaterra & M Collins. 2018. Model tropical Atlantic biases underpin diminished Pacific decadal variability. Nature Climate Change 8(6): 493-498.

Mendelssohn R. 2021. rerddapXtracto: Extracts Environmental Data from 'ERDDAP' Web Services (Version 1.1.2): CRAN. <https://cran.r-project.org/web/packages/rerddapXtracto/rerddapXtracto.pdf>

Misra V, D Groenen, A Bharadwaj & A Mishra. 2016. The warm pool variability of the tropical northeast Pacific. International Journal of Climatology: 1-13.

Murillo-Murillo I, R Cervantes-Duarte, G Gaxiola-Castro, S López-López, F Aguirre-Bahena, E González-Rodríguez, A Jiménez-Illescas & F Hernández-Sandoval. 2013. Variabilidad de la productividad primaria y de pigmentos fotosintéticos en una zona de surgencias de la región sur de la corriente de California. CICIMAR Oceánides 28(1): 23-26.

Nurhati I, K Cobb & E Di Lorenzo. 2011. Decadal-scale SST and salinity variations in central tropical Pacific signatures of natural and anthropogenic climate change. Journal of Climate 24: 3294-3308.

Osgood G, E White & J Baum. 2021. Effects of climate‐change driven gradual and acute temperature changes on shark and ray species. Journal of Animal Ecology 90: 1-13.

Peñaherrera-Palma C. 2016. Abundance, distribution and conservation value of sharks in the Galapagos Marine Reserve. PHD Thesis, Institute for Marine and Antarctic Sciences, University of Tasmania, Hobart, 153 pp.

Peñaherrera- -Palma C, R Arauz, S Bessudo, E Bravo-Ormaza, O Chassot, N Chinacalle-Martínez, E Espinoza, K Forsberg, E García-Rada, H Guzmán, M Hoyos, R Hucke, J Ketchum, AP Klimley, J López-Macías, Y Papastamatiou, R Rubin, G Shillinger, G Soler, T Steiner, F Vallejo, I Zanella, P Zárate, J Zevallos-Rosado & A Hearn. 2018. Justificación biológica para la creación de la MigraVía Coco-Galápagos, 72 pp. MigraMar y Pontificia Universidad Católica del Ecuador Sede Manabí, Portoviejo.

R Core Team. 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna. <https://www.R-project.org/>

Reygondeau G. 2019. Current and future biogeography of exploited marine groups under climate change. In: Cisneros-Montemayor AM, WWL Cheung & Y Ota (eds). Predicting Future Oceans: Sustainability of ocean and human systems amidst global environmental change, pp. 87-101. Elsevier, Amsterdam.

Rigby CL, NK Dulvy, R Barreto, J Carlson, D Fernando, S Fordham, MP Francis, K Herman, RW Jabado, KM Liu, A Marshall, N Pacoureau, E Romanov, RB Sherley & H Winker. 2019. Sphyrna lewini. The IUCN Red List of Threatened Species 2019. International Union for the Conservation of Nature. <https://www.iucnredlist.org/species/39385/2918526>

Rodríguez-Rubio E, J Ortiz & J Rueda. 2007. Aspectos oceanográficos. En: DIMAR-CCP & UAESPNN-DTSO (eds). Santuario de fauna y flora Malpelo: Descubrimiento en marcha, pp. 29-44. DIMAR, Bogotá.

Rústico G, A Koutavas, T Marchitto & B Linsley. 2015. Dynamical excitation of the tropical Pacific Ocean and ENSO variability by Little Ice Age cooling. Science 350(6267): 1537-1541.

Sohn B-J, S Lee, E-S Chung & H-J Song. 2016. The role of the dry static stability for the recent change in the Pacific Walker circulation. Journal of Climate 29(8): 2765-2779.

Spalding MD, HE Fox, GR Allen, N Davidson, ZA Ferdaña, M Finlayson, BS Halpern, MA Jorge, A Lombana, SA Lourie, KD Martin, E McManus, J Molnar, CA Recchia & J Robertson. 2007. Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. BioScience 57(7): 573-583.

Tangang F, L Juneng & S Ahmad. 2006. Trend and interannual variability of temperature in Malaysia. Theoretical and Applied Climatology 89(3-4): 127-141.

Torres E. 2004. Características dinámicas e hidrográficas del océano en relación con la distribución de las capturas de atún aleta amarilla (Thunnus albacares) en la entrada al Golfo de California. Tesis Doctoral, Centro de Investigaciones Biológicas del Noroeste, S.C., La Paz, 127 pp.

Vega C, C Hernández-Guerrero & J Cruz-Barraza. 2012. Biogeografía de esponjas marinas (Phylum Porifera). Estudios en el Pacífico Oriental. CICIMAR Oceánides 27(1): 35-50.

Wang B, X Luo, Y-M Yang, W Sun, MA Cane, W Cai, S-W Yeh & J Liu. 2019. Historical change of El Niño properties sheds light on future changes of extreme El Niño. Proceedings of the National Academy of Sciences 116(45): 22512-22517.

Whitehead H, B McGill & B Worm. 2008. Diversity of deep-water cetaceans in relation to temperature: implications for ocean warming. Ecology Letters 11(11): 1198-1207.

Wolff M. 2010. Galapagos does not show recent warming but increased seasonality. Galapagos Research 67: 38-44.

Yang H, G Lohmann, U Krebs-Kanzow, M Ionita, X Shi, D Sidorenko, X Gong, X Chen & E Gowan. 2020. Poleward shift of the major ocean gyres detected in a warming climate. Geophysical Research Letters 47: e2019GL085868. <https://doi.org/10.1029/2019GL085868>

Zhao X & RJ Allen. 2019. Strengthening of the Walker Circulation in recent decades and the role of natural sea surface temperature variability. Environmental Research Communications 1(2): 021003.

Zhu J, A Kumar & B Huang. 2015. The relationship between thermocline depth and SST anomalies in the Eastern Equatorial Pacific: Seasonality and decadal variations: Relationship between thermocline and SST. Geophysical Research Letters 42: 4507-4515.

Descargas

Publicado

2023-12-25

Cómo citar

Zevallos-Rosado, J., Chinacalle-Martínez, N., Murillo-Posada, J. C., Veelenturf, C., & Peñaherrera-Palma, C. (2023). Comparative analysis of spatiotemporal trends in sea surface temperature in the major marine protected areas of the Eastern Tropical Pacific: Análisis comparativo de las tendencias espaciotemporales en la temperatura superficial del mar en las principales áreas marinas protegidas del Pacífico Oriental Tropical. Revista De Biología Marina Y Oceanografía, 58(1), 19–31. https://doi.org/10.22370/rbmo.2023.58.1.4145

Número

Sección

Artículo

Artículos similares

1 2 3 4 5 6 7 8 9 10 > >> 

También puede {advancedSearchLink} para este artículo.