Biocarbón a partir de macroalgas: Potencial uso en remediación, enmienda de suelos y secuestro de carbono

Autores/as

DOI:

https://doi.org/10.22370/rbmo.2025.60.1.5379

Palabras clave:

biocarbón, sustentabilidad, enmienda de suelo, remediación, secuestro de carbono, Instituto Milenio en Socio-ecología Costera

Resumen

Esta revisión presenta la producción y uso del biocarbón en los aspectos de estructura química, utilización y mercado global actual, con énfasis en las aplicaciones biotecnológicas del biocarbón de macroalgas marinas. Para esto se realizó una búsqueda bibliográfica en diversas bases de datos, utilizando palabras claves y algoritmos en español como en inglés. Los resultados indican que el biocarbón proveniente de macroalgas marinas es una eficiente alternativa para la remediación de ecosistemas terrestres y/o acuáticos. La capacidad de captura de diferentes tipos de contaminantes (microplásticos, metales pesados, hidrocarburos aromáticos policíclicos, entre otros) proporciona al biocarbón propiedades que establecen que sea un material apropiado para la remediación ambiental, incluyendo la reducción de las emisiones de gases de efecto invernadero. La coproducción de biocarbón y bioenergía es una alternativa para aminorar los efectos del cambio climático, contribuyendo a reducir el uso de combustibles fósiles y secuestrando carbono en reservas estables del suelo. Adicionalmente, el uso del biocarbón como enmienda de suelos y fertilizantes, es una herramienta significativa para acrecentar la seguridad alimentaria y aumentar las áreas de cultivo en zonas con suelos degradados física y químicamente, caracterizados por bajo contenido de materia orgánica, inadecuados contenidos de fertilizantes químicos, deficiente retención de agua y toxicidad por contaminantes. Por lo tanto, el uso del biocarbón de macroalgas es una herramienta ambiental de alto valor agregado.

Descargas

Los datos de descarga aún no están disponibles.

Biografía del autor/a

Referencias

Abdel-Raouf N, AA Al-Homaidan & IBM Ibraheem. 2012. Agricultural importance of algae. African Journal of Biotechnology 11: 11648-11658. <https://doi.org/ 10.5897/AJB11.3983>

Adams JMM, LB Turner, TA Toop, ME Kirby, C Roslin, E Judd, R Inkster, L McEvoy, WM Mirza, MK Theodorou & J Gallagher. 2020. Evaluation of pyrolysis chars derived from marine macroalgae silage as soil amendments. GCB Bioenergy 12(9): 706-727. <https://doi.org/10.1111/gcbb.12722>

Afanasjeva N, LC Castillo & JC Sinisterra. 2018. Biomasa lignocelulósica. Parte II. Tendencias en la pirólisis de biomasa. Journal of Science with Technological Applications 5: 4-22. <https://doi.org/10.34294/j.jsta.18.5.31>

Afshar M & S Mofatteh. 2024. Biochar for a sustainable future: Environmentally friendly production and diverse applications. Results in Engineering 23, 102433. <https://doi.org/10.1016/j.rineng.2024.102433>

Ahmad M, AU Rajapaksha, JE Lim, M Zhang, N Bolan, D Mohan, M Vithanage, SS Lee & YS Ok. 2014. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 99: 19-33. <https://doi.org/10.1016/j.chemosphere.2013.10.071>

Alam SN, B Singh, A Guldhe, S Raghuvanshi & KS Sangwan. 2024. Sustainable valorization of macroalgae residual biomass, optimization of pyrolysis parameters and life cycle assessment. Science of the Total Environment 919, 170797. <https://doi.org/10.1016/j.scitotenv.2024.170797>

Araya M, J Rivas, G Sepúlveda, C Espinoza-González, S Lira, A Meynard, E Blanco, N Escalona, R Ginocchio, E Garrido-Ramírez & L Contreras-Porcia. 2021. Effect of pyrolysis temperature on cooper aqueous removal capability of biochar derived from the kelp Macrocystis pyrifera. Applied Sciences 11(19), 9223. <https://doi.org/10.3390/app11199223>

Baldock JA & RJ Smernik. 2002. Chemical composition and bioavailability of thermally altered Pinus resinosa (Red pine) wood. Organic Geochemistry 33: 1093-1109. <https://doi.org/10.1016/S0146-6380(02)00062-1>

Bastidas DX & NA Miño. 2019. Caracterización comparativa del proceso de pirólisis de dos biomasas, 202 pp. Universidad Central del Ecuador, Quito.

Bekchanova M, L Campion, S Bruns, T Kuppens, J Lehmann, M Jozefczak, A Cuypers & R Malina. 2024. Biochar improves the nutrient cycle in sandy-textured soils and increases crop yield: a systematic review. Environmental Evidence 13, 3. <https://doi.org/10.1186/s13750-024-00326-5>

Bird MI, CM Wurster, PH de Paula Silva, AM Bass & R de Nys. 2011. Algal biochar-production properties. Bioresource Technology 102(2): 1886-1891. <https://doi.org/10.1016/j.biortech.2010.07.106>

Boateng AS. 2020. Pyrolisis of biomass for fuels and chemicals, 276 pp. Academic Press, London. <https://doi.org/10.1016/C2018-0-03824-4>

Buckland H, C Rius, F Tempestilli, E Buysman, T Nguyen, NT Truc & A Flammini. 2021. Market analysis of biochar produced by small-scale pyrolysis units in Vietnam, 66 pp. United Nations Industrial Development Organization, Vienna.

Campion L, M Bekchanova, R Malina & T Kuppens. 2023. The costs and benefits of biochar production and use: A systematic review. Journal of Cleaner Production 408, 137138. <https://doi.org/10.1016/j.jclepro.2023.137138>

Chan KY & ZH Xu. 2009. Biochar: Nutrient properties and their enhancement. In: Lehmann J & S Joseph (eds). Biochar for environmental management: Science and Technology, pp. 67-84. Earthscan, London.

Cheng C-H & J Lehmann. 2009. Ageing of black carbon along a temperature gradient. Chemosphere 75: 1021-1027. <https://doi.org/10.1016/j.chemosphere.2009.01.045>

Cheng C-H, J Lehmann & MH Engelhard. 2008. Natural oxidation of black carbon in soils: Changes in molecular form and surface charge along a climosequence. Geochimica et Cosmochimica Acta 72: 1598-1610. <https://doi.org/10.1016/j.gca.2008.01.010>

Contreras-Porcia L, M Araya, E Garrido-Ramírez, C Bulboa, JP Remonsellez, J Zapata, C Espinoza & J Rivas. 2018. Biochar production from seaweeds. In: Charrier B, T Wichard & CRK Reddy (eds). Protocols for macroalgae research, pp. 175-185. CRC Press, Phycomorph & COST (European Cooperation in Science and Technology).

Damania R, S Desbureaux, AS Rodella, J Russ & E Zaveri. 2019. Quality unknown: the invisible water crisis, 120 pp. World Bank, Washington DC. <http://hdl.handle.net/10986/32245>

Dang B-T, R Ramaraj, K-P-H Huynh, M-V Le, I Tomoaki, T-T Pham, VH Luan, PTL Na & DPH Tran. 2023. Current application of seaweed waste for composting and biochar: A review. Bioresource Technology 375, 128830. <https://doi.org/10.1016/j.biortech.2023.128830>

Donner M & H de Vries. 2023. Innovative business models for a sustainable circular bioeconomy in the French agrifood domain. Sustainability 15, 5499. <https://doi.org/10.3390/su15065499>

Duarte CM & J Cebrián. 1996. The fate of marine autotrophic production. Limnology and Oceanography 41(8): 1758-1766. <https://doi.org/10.4319/lo.1996.41.8.1758>

Elias M, J Hunt, J Remucal, P Saksa & DL Sanchez. 2022. Biochar carbon credit market analysis: Examining the potential for coupled biochar and carbon credit production from wildfire fuel reduction projects in the Western U.S., 44 pp. Blue Forest Conservation, Berkeley. <https://pacificbiochar.com/wp-content/uploads/BiocharCarbonCreditAnalysis-BFReports20221.pdf>

Escalante-Rebolledo A, G Pérez-López, C Hidalgo-Moreno, J López-Collado, J Campo-Alves, E Valtierra-Pacheco & J Etchevers-Barra. 2016. Biocarbón (biochar) I: Naturaleza, historia, fabricación y uso en el suelo. Terra Latinoamericana 34: 367-382.

European Commission. 2012. Innovating for sustainable growth: a bioeconomy for Europe, 59 pp. Directorate-General for Research and Innovation. Publications Office, Luxembourg. <https://data.europa.eu/doi/10.2777/6462>

Farghali M, IMA Mohamed, AI Osman & DW Rooney. 2023. Seaweed for climate mitigation, wastewater treatment, bioenergy, bioplastic, biochar, food, pharmaceuticals, and cosmetics: a review. Environmental Chemistry Letters 21: 97-152. <https://doi.org/10.1007/s10311-022-01520-y>

Farobie O, A Amrullah, W Fatriasari, ABD Nandiyanto, L Ernawati, S Karnjanakom, SH Lee, R Selvasembian, NIW Azelee & M Aziz. 2024. Co-pyrolysis of plastic waste and macroalgae Ulva lactuca, a sustainable valorization approach towards the production of bio-oil and biochar. Results in Engineering 24, 103098. <https://doi.org/10.1016/j.rineng.2024.103098>

Fujita R, S Augyte, J Bender, P Brittingham, AH Buschmann, M Chalfin, J Collins, KA Davis, JB Gallagher, R Gentry, RL Gruby, K Kleisner, M Moritsch, N Price, L Roberson, J Taylor & C Yarish. 2023. Seaweed blue carbon: Ready? Or not? Marine Policy 155(12), 105747. <https://doi.org/10.1016/j.marpol.2023.105747>

Ginocchio R, M Araya, J Machado, LM Fuente, F Orrego, EC Arellano & L Contreras-Porcia. 2023. Seaweed biochar (sourced from marine water remediation farms) for soil remediation: Towards an integrated approach of terrestrial-coastal marine water remediation. BioResources 18: 4637-4656. <https://doi.org/10.15376/biores.18.3.4637-4656>

Gwenzi W, N Chaukura, C Noubactep & FND Mukome. 2017. Biochar-based water treatment systems as a potential low-cost and sustainable technology for clean water provision. Journal of Environmental Management 197: 732-749. <https://doi.org/10.1016/j.jenvman.2017.03.087>

Haeldermans T, L Campion, T Kuppens, K Vanreppelen, A Cuypers & S Schreurs. 2020. A comparative techno-economic assessment of biochar production from different residue streams using conventional and microwave pyrolysis. Bioresource Technology 318, 124083. <https://doi.org/10.1016/j.biortech.2020.124083>

Hammes K, RJ Smernik, JO Skjemstad, A Herzog, UF Vogt & MWI Schmidt. 2006. Synthesis and characterization of laboratory-charred grass straw (Oriza sativa) and chestnut wood (Castanea sativa) as reference materials for black carbon quantification. Organic Geochemistry 37: 1629-1633. <https://doi.org/10.1016/j.orggeochem.2006.07.003>

Hepburn C, E Adlen, J Beddington, EA Carter, S Fuss, N Mac Dowell, JC Minx, P Smith & CK Williams 2019. The technological and economic prospects for CO2 utilization and removal. Nature 575: 87-97. <https://doi.org/10.1038/s41586-019-1681-6>

Hobday AJ. 2000. Abundance and dispersal of drifting kelp Macrocystis pyrifera rafts in the Southern California Bight. Marine Ecology Progress Series 195: 101-116. <https://www.jstor.org/stable/24855014>

Hung C-M, C-W Chen, C-P Huang, J-W Cheng & C-D Dong. 2022. Algae-derived metal-free boron-doped biochar as an efficient bioremediation pretreatment for persistent organic pollutants in marine sediments. Journal of Cleaner Production 336, 130448. <https://doi.org/10.1016/j.jclepro.2022.130448>

Inyang M & E Dickenson. 2015. The potential role of biochar in the removal of organic and microbial contaminants from potable and reuse water: A review. Chemosphere 134: 232-240. <https://doi.org/10.1016/j.chemosphere.2015.03.072>

Jagadeesh N & B Sundaram. 2023. Adsorption of pollutants from wastewater by biochar: a review. Journal of Hazardous Materials Advances 9, 100226. <https://doi.org/10.1016/j.hazadv.2022.100226>

Jeffery S, TM Bezemer, G Cornelissen, TW Kuyper, J Lehmann, L Mommer, SP Sohi, TF van de Voorde, DA Wardle & JW van Groenigen. 2015. The way forward in biochar research: targeting trade-offs between the potential wins. GCB Bioenergy 7: 1-13. <https://doi.org/10.1111/gcbb.12132>

Kandale A, AK Meena, MM Rao, P Panda, AK Mangal, G Reddy & R Babu. 2011. Marine algae: an introduction, food value and medicinal uses. Journal of Pharmacy Research 4: 219-221.

Kimetu JM, J Lehmann, SO Ngoze, DN Mugendi, JM Kinyangi, S Riha, L Verchot, JW Recha & AN Pell. 2008. Reversibility of soil productivity decline with organic matter of differing quality along a degradation gradient. Ecosystems 11: 726-739. <https://doi.org/10.1007/s10021-008-9154-z>

Krause-Jensen D & CM Duarte. 2016. Substantial role of macroalgae in marine carbon sequestration. Nature Geoscience 9(10): 737-742. <https://doi.org/10.1038/ngeo2790>

Krause-Jensen D, P Lavery, O Serrano, N Marbà, P Masque & CM Duarte. 2018. Sequestration of macroalgal carbon: the elephant in the Blue Carbon room. Biology Letters 14(6), 20180236. <https://doi.org/10.1098/rsbl.2018.0236>

Krumhansl KA & RE Scheibling. 2012. Production and fate of kelp detritus. Marine Ecology Progress Series 467: 281-302. <https://doi.org/10.3354/meps09940>

Kurniawan TA, MHD Othman, X Liang, HH Goh, P Gikas, K-K Chong & KW Chew. 2023. Challenges and opportunities for biochar to promote circular economy and carbon neutrality. Journal of Environmental Management 332, 117429. <https://doi.org/10.1016/j.jenvman.2023.117429>

Lehmann J & S Joseph. 2009. Biochar for environmental management: an introduction. In: Lehmann J & S Joseph (eds). Biochar for environmental management: Science, technology and implementation 1: 1-15. Earthscan, London.

Lian Y, R Wang, J Zheng, W Chen, L Chang, C Li & SC Yim. 2023. Carbon sequestration assessment and analysis in the whole life cycle of seaweed. Environmental Research Letters 18, 074013. <https://doi.org/10.1088/1748-9326/acdae9>

Liu P, D Rao, L Zou, Y Teng & H Yu. 2021. Capacity and potential mechanisms of Cd (II) adsorption from aqueous solution by blue algae-derived biochars. Science of the Total Environment 767, 145447. <https://doi.org/10.1016/j.scitotenv.2021.145447>

Luo D, L Wang, H Nan, Y Cao, H Wang, TV Kumar & C Wang. 2023. Phosphorus adsorption by functionalized biochar: a review. Environmental Chemistry Letters 21: 497-524. <https://doi.org/10.1007/s10311-022-01519-5>

Ly HV, SS Kim, HC Woo, JH Choi, DJ Suh & J Kim. 2015. Fast pyrolysis of macroalgae Saccharina japonica in a bubbling fluidized-bed reactor for bio-oil production. Energy 93(2): 1436-1446. <https://doi.org/10.1016/j.energy.2015.10.011>

Marousek J, B Minofar, A Marouskova, O Strunecký & B Gavurová. 2023. Environmental and economic advantages of production and application of digestate biochar. Environmental Technology & Innovation 30, 103109. <https://doi.org/10.1016/j.eti.2023.103109>

Mašek O & P Brownsort. 2011. Biochar production. In: Shackley S & S Sohi (eds). An assessment of the benefits and issues associated with the application of biochar to soil, pp. 37‑44. UK Biochar Research Centre, Edinburgh.

Mondal AK, C Hinkley, S Kondaveeti, PHN Vo, P Ralph & U Kuzhiumparambil. 2024a. Influence of pyrolysis time on removal of heavy metals using biochar derived from macroalgal biomass (Oedogonium sp.). Bioresource Technology 414, 131562. <https://doi.org/10.1016/j.biortech.2024.131562>

Mondal AK, C Hinkley, L Krishnan, N Ravi, F Akter, P Ralph & U Kuzhiumparambil. 2024b. Macroalgae-based biochar: preparation and characterization of physicochemical properties for potential applications. RSC Sustainability 2: 1828-1836. <https://doi.org/10.1039/D4SU00008K>

Montoya J, F Janna, EF Castillo, J Acero, C Gómez, J Sarmiento, CF Valdés, LL Garzón, J Osorio, D Tirado, LA Blanco, N Moreno, G Marrugo & EY Ospina. 2014. Pirólisis rápida de biomasa, 41 pp. Universidad Nacional de Colombia, Medellín.

Mutizabal-Aros J, ME Ramírez, PA Haye, A Meynard, B Pinilla-Rojas, A Núñez, N Latorre-Padilla, FV Search, FJ Tapia, GS Saldías, SA Navarrete & L Contreras-Porcia. 2024. Morphological and molecular identification of Ulva spp. (Ulvophyceae; Chlorophyta) from Algarrobo Bay, Chile: Understanding the composition of green tides. Plants 13(9), 1258. <https://doi.org/10.3390/plants13091258>

Niedzbała N, E Lorenc-Grabowska, P Rutkowski, J Checmanowski, A Szymczycha-Madeja, M Welma & I Michalak. 2024. Potential use of Ulva intestinalis-derived biochar adsorbing phosphate ions in the cultivation of winter wheat Tristicum aestivum. Bioresource and Bioprocessing 11, 27. <https://doi.org/10.1186/s40643-024-00741-z>

Norouzi O, S Jafarian, F Safari, A Tavasoli & B Nejati. 2016. Promotion of hydrogen-rich gas and phenolic-rich bio-oil production from green macroalgae Cladophora glomerata via pyrolysis over its bio-char. Bioresource Technology 219: 643-651. <https://doi.org/10.1016/j.biortech.2016.08.017>

Norouzi O, A Tavasoli, S Jafarian & S Esmailpour. 2017. Catalytic upgrading of bio-products derived from pyrolysis of red macroalgae Gracilaria gracilis with a promising novel micro/mesoporous catalyst. Bioresource Technology 243: 1-8. <https://doi.org/10.1016/j.biortech.2017.06.072>

Ok YS, SM Uchimiya, SX Chang & N Bolan. 2016. Biochar: Production, characterization, and applications, 438 pp. CRC Press Taylor & Francis Group, New York.

Olmo M. 2016. Efectos del biochar sobre el suelo, las características de la raíz y la producción vegetal. Tesis Doctoral, Departamento de Botánica, Ecología y Fisiología Vegetal, Universidad de Córdoba, Córdova, 157 pp. <https://helvia.uco.es/xmlui/handle/10396/13381>

Palansooriya KN, Y Yang, YF Tsang, B Sarkar, D Hou, X Cao, E Meers, J Rinklebe, K-H Kim & YS Ok. 2020. Occurrence of contaminants in drinking water sources and the potential of biochar for water quality improvement: A review. Critical Reviews in Environmental Science and Technology 50: 549-611. <https://doi.org/10.1080/10643389.2019.1629803>

Pessarrodona A, J Assis, K Filbee-Dexter, MT Burrows, J-P Gattuso, CM Duarte, D Krause-Jensen, PJ Moore, DA Smale & T Wernberg. 2022. Global seaweed productivity. Science Advances 8(37), eabn2465. <https://doi.org/10.1126/sciadv.abn2465>

Petersen HI, H Deskur, A Rudra, SB Ørberg, D Krause-Jensen & H Sanei. 2024. Pyrolysis of macroalgae: Insight into product yields and biochar morphology and stability. International Journal of Coal Geology 286, 104498. <https://doi.org/10.1016/j.coal.2024.104498>

Putri AHI, S Steven, FD Oktavia, E Restiawaty, IB Adilina, M Safaat, P Hernowo, T Prakoso, AN Istyami, M Pratiwi & Y Bindar. 2024. Pyrolysis of macroalgae residue from the agar industry for silica-rich biochar and other sustainable chemicals: Process performances, product applications, and simple business scenario. Biofuels, Bioproducts and Biorefining 18: 391-409. <https://doi.org/10.1002/bbb.2597>

Razzaghi F, PB Obour & E Arthur. 2020. Does biochar improve soil water retention? A systematic review and meta-analysis. Geoderma 361, 114055. <https://doi.org/10.1016/j.geoderma.2019.114055>

Rex P, KRM Ismail, N Meenakshisundaram, P Barmavatu & AVSLS Bharadwaj. 2023. Agricultural biomass waste to biochar: A review on biochar applications using machine learning approach and circular economy. ChemEngineering 7 (3), 50. <https://doi.org/10.3390/chemengineering7030050>

Rizwan M, G Murtaza, F Zulfiqar, A Moosa, R Iqbal, Z Ahmed, S Irshad, I Khan, T Li, J Chen, M Zhang, KHM Siddique, L Leng & H Li. 2023. Sustainable manufacture and application of biochar to improve soil properties and remediate soil contaminated with organic impurities: a systematic review. Frontiers in Environmental Science 11, 1277240. <https://doi.org/10.3389/fenvs.2023.1277240>

Roberts DA, NA Paul, SA Dworjanyn, MI Bird & R de Nys. 2015. Biochar from commercially cultivated seaweed for soil amelioration. Scientific Reports 5, 9665. <https://doi.org/10.1038/srep09665>

Saeed AAH, NY Harun, S Sufian, AA Siyal, M Zulfiqar, MR Bilad, A Vagananthan, A Al-Fakih, AAS Ghaleb & N Almahbashi. 2020. Eucheuma cottonii seaweed-based biochar for adsorption of methylene blue dye. Sustainability 12(24), 10318. <https://doi.org/10.3390/su122410318>

Schahczenski J. 2010. Biochar and sustainable agriculture, 12 pp. ATTRA - National Center for Appropriate Technology, Butter. <https://pacificfarmers.com/wp-content/uploads/2015/08/biochar.pdf>

Seow YX, YH Tan, NM Mubarak, J Kansedo, M Khalid, ML Ibrahim & M Ghasemi. 2022. A review on biochar production from different biomass wastes by recent carbonization technologies and its sustainable applications. Journal of Environmental Chemical Engineering 10(1), 107017. <https://doi.org/10.1016/j.jece.2021.107017>

Singh A, R Sharma, D Pant & P Malaviya. 2021. Engineered algal biochar for contaminant remediation and electrochemical applications. Science of the Total Environment 774, 145676. <https://doi.org/10.1016/j.scitotenv.2021.145676>

Singh B, M Camps-Arbestain & J Lehmann. 2017. Biochar a guide to analytical methods, 321 pp. Csiro Publishing, Clayton.

Suasnavas GS. 2023. Análisis de la producción de biochar a partir de residuos ganaderos en Ecuador. Tesis de Máster, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, Madrid, 80 pp. <https://oa.upm.es/75222/1/TFM_GANDI_SALVADOR_SUASNAVAS_RUBIO.pdf>

Sun J, O Norouzi & O Mašek. 2021. A state-of-the-art review on algae pyrolysis for bioenergy and biochar production. Bioresource Technology 346, 126258. <https://doi.org/10.1016/j.biortech.2021.126258>

Truong Q-M, P-N-T Ho, T-B Nguyen, W-H Chen, X-T Bui, AK Patel, RR Singhania, C-W Chen & C-D Dong. 2022. Magnetic biochar derived from macroalgal Sargassum hemiphyllum for highly efficient adsorption of Cu (II): Influencing factors and reusability. Bioresource Technology 361, 127732. <https://doi.org/10.1016/j.biortech.2022.127732>

Urien A. 2013. Obtención de biocarbones y biocombustibles mediante pirólisis de biomasa residual. Tesis de Máster, Universidad Nacional de Educación a Distancia, Madrid, 83 pp. <https://digital.csic.es/bitstream/10261/80225/1/BIOCARBONES_CENIM_CSIC.pdf >

Venkatesh G, KA Gopinath, KS Reddy, BS Reddy, M Prabhakar, C Srinivasarao, VV Kumari & VK Singh. 2022. Characterization of biochar derived from crop residues for soil amendment, carbon sequestration and energy use. Sustainability 14(4), 2295. <https://doi.org/10.3390/su14042295>

Wang S, B Cao, X Liu, L Xu, Y Hu, S Afonaa-Mensah, AE-F Abomohra, Z He, Q Wang & S Xu. 2018. A comparative study on the quality of bio-oil derived from green macroalga Enteromorpha clathrata over metal modified ZSM-5 catalysts. Bioresource Technology 256: 446-455. <https://doi.org/10.1016/j.biortech.2018.01.134>

Wang Q, L Zhang, Y Chen, J Yin & J-Y Li. 2023a. An application of waste algae biochar in aquaculture water to remove co-existed cadmium and PAHs and the corresponding mechanism. Environmental Technology 44: 1392-1404. <https://doi.org/10.1080/09593330.2021.2003438>

Wang Y, C Ma, D Kong, L Lian & Y Liu. 2023b. Review on application of algae-based biochars in environmental remediation: Progress, challenge and perspectives. Journal of Environmental Chemical Engineering 11, 111263. <https://doi.org/10.1016/j.jece.2023.111263>

Woolf D, JE Amonette, FA Street-Perrott, J Lehmann & S Joseph. 2010. Sustainable biochar to mitigate global climate change. Nature Communications 1, 56. <https://doi.org/10.1038/ncomms1053>

Xia L, W Chen, B Lu, S Wang, L Xiao, B Liu, H Yang, CL Huang, H Wang, Y Yang, L Lin, X Zhu, WQ Chen, X Yan, M Zhuang, CC Kung, YG Zhu & Y Yang. 2023. Climate mitigation potential of sustainable biochar production in China. Renewable and Sustainable Energy Reviews 175, 113145. <https://doi.org/10.1016/j.rser.2023.113145>

Yaashikaa PR, PS Kumar, S Varjani & A Saravanan. 2020. A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnology Reports 28, e00570. <https://doi.org/10.1016/j.btre.2020.e00570>

Descargas

Publicado

2025-12-01

Número

Sección

Revisión

Artículos similares

1-10 de 83

También puede Iniciar una búsqueda de similitud avanzada para este artículo.

Artículos más leídos del mismo autor/a