Weak and Post completeness in the Hilbert school

Víctor Aranda

Abstract


The aim of this paper is to clarify why propositional logic is Post complete and its weak completeness was almost unnoticed by Hilbert and Bernays, while first-order logic is Post incomplete and its weak completeness was seen as an open problem by Hilbert and Ackermman. Thus, I will compare propositional and first-order logic in the Prinzipien der Mathematik, Bernays’s second Habilitationsschrift and the Grundzüge der Theoretischen Logik. The so called “arithmetical interpretation”, the conjunctive and disjunctive normal forms and the soundness of the propositional rules of inference deserve special emphasis.


Keywords


history of logic; classical logic; normal forms; soundness; Bernays

References


Hilbert, D. (2013), David Hilbert’s Lectures on the Foundations of Arithmetic and Logic 1917–1933, W. Ewald y W. Sieg (eds.), pp. 231-269. Berlin: Springer.

Dreben, B., van Heijenoort, J. (1986). Introductory note to 1929, 1930 and 1930a. En Gödel, K. (1986), Collected Works, vol. 1. S. Feferman et al. (eds.), pp. 44-59. Oxford: Oxford University Press.

Gödel, K. (1929). On the completeness of the calculus of logic. En Gödel, K. (1986), Collected Works, vol. 1. S. Feferman et al. (eds.), pp. 61-101. Oxford: Oxford University Press.

Gödel, K. (1930). The completeness of the axioms of the functional calculus of logic. En Gödel, K. (1986), Collected Works, vol. 1. S. Feferman et al. (eds.), pp. 103-123. Oxford: Oxford University Press.

Gödel, K. (1986). Collected Works, vol. 1, S. Feferman et al. (eds.). Oxford: Oxford University Press.

Hilbert, D. (1904). On the foundations of logic and arithmetic. En van Heijenoort, J. (ed.) (1967), From Frege to Gödel. A Source Book in Mathematical Logic 1879-1931, pp. 129-138. Harvard: Harvard University Press.

Hilbert, D. (1917-18). Prinzipien der Mathematik. En Hilbert, D. (2013). David Hilbert’s Lectures on the Foundations of Arithmetic and Logic 1917–1933, W. Ewald y W. Sieg (eds.), pp. 59-219. Berlin: Springer.

Hilbert, D. (2013). David Hilbert’s Lectures on the Foundations of Arithmetic and Logic 1917–1933. W. Ewald y W. Sieg (eds.). Berlin: Springer.

Hilbert, D., Ackermann, W (1928). Grundzüge der theoretischen Logik. En Hilbert, D., (2013). David Hilbert’s Lectures on the Foundations of Arithmetic and Logic 1917–1933,

W. Ewald y W. Sieg (eds.), pp. 809-916. Berlin: Springer.

Lewis, C. I. (1918). A Survey of Symbolic Logic. Berkeley y Los Angeles: University of California Press.

Löwenheim, L. (1915). On possibilities in the calculus of relatives. En En van Heijenoort, J. (ed.) (1967), From Frege to Gödel. A Source Book in Mathematical Logic 1879-1931, pp. 228-251. Harvard: Harvard University Press.

Mancosu, P. (2010). The Adventure of Reason. Interplay between Philosophy of Mathematics and Mathematical Logic, 1900-1940. Oxford: Oxford University Press.

Manzano, M., Alonso, E. (2014). Completeness: from Gödel to Henkin. History and Philosophy of Logic, 35(1): 1-26. https://doi.org/10.1080/01445340.2013.816555

Monk, R. (1994). Ludwig Wittgenstein. Barcelona: Editorial Anagrama.

Post, E. (1921). Introduction to a general theory of elementary propositions. En van Heijenoort, J. (ed.) (1967), From Frege to Gödel. A Source Book in Mathematical Logic 1879-1931, pp. 264-283. Harvard: Harvard University Press.

van Heijenoort, J. (ed.) (1967). From Frege to Gödel. A Source Book in Mathematical Logic 1879-1931. Harvard: Harvard University Press.

Wittgenstein, L. (1922). Tractatus logico-philosophicus. Londres: Kegan Paul.

Zach, R. (1999). Completeness before Post: Bernays, Hilbert and the development of propositional logic. Bulletin of Symbolic Logic, 5(3): 331-366.




DOI: https://doi.org/10.22370/rhv2019iss14pp449-466

Copyright (c) 2019 Humanities Journal of Valparaiso

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.