Evaluation of the growth of Chondracanthus chamissoi gametophytes in culture medium enriched with phytohormones

Authors

DOI:

https://doi.org/10.22370/rbmo.2025.60.1.5536

Keywords:

Chondracanthus chamissoi, tetraspores, algae culture, phytohormones

Abstract

The study focused on the life cycle of Chondracanthus chamissoi, characterized by its isomorphic triphasic phase and spore propagation. The effect of phytohormones in alternative culture media on the settlement and growth of gametophytes was evaluated. Tetraspores were inoculated on polypropylene ropes and exposed to six treatments with different concentrations of a hormonal solution (gibberellins, auxins, cytokinins). Over 10 weeks, the number of settled spores, disc density, and microthallus size were measured. The results showed increased growth with higher concentrations of phytohormones, the treatment with 100% phytohormones (T1) produced the highest amount of developed discs (133 ± 9 mm-2), which confirms its positive effect on the morphogenesis of C. chamissoi, while the treatment without phytohormones (T6) showed the lowest amount of developed discs (25 ± 10 mm-2) suggesting their usefulness in the propagation of this economically important species.

Downloads

Download data is not yet available.

Author Biography

References

Arbaiza S, P Gil-Kodaka, N Arakaki & K Alveal. 2019. First stages of cultivation from Chondracanthus chamissoi carpospores from three locations on the Peruvian coast. Revista de Biología Marina y Oceanografía 54(2): 204-213. <https://doi.org/10.22370/rbmo.2019.54.2.1901>

Ávila M, MI Piel, JH Cáceres & K Alveal. 2011. Cultivation of the red alga Chondracanthus chamissoi: Sexual reproduction and seedling production in culture under controlled conditions. Journal of Applied Phycology 23(3): 529-536. <https://doi.org/10.1007/s10811-010-9628-1>

Basaure H, J Macchiavello, C Sepúlveda, F Sáez, D Yañez, L Vega & C Marín. 2021. Sea bottom culture of Chondracanthus chamissoi (Rhodophyta: Gigartinales) by vegetative propagation at Puerto Aldea, Tongoy Bay (Northern Chile). Aquaculture Research 52(5): 2025-2035. <https://doi.org/10.1111/are.15051>

Bermejo R, CL Cara, M Macías, J Sánchez-García & I Hernández. 2020. Growth rates of Gracilariopsis longissima, Gracilaria bursa-pastoris and Chondracanthus teedei (Rhodophyta) cultured in ropes: implication for N biomitigation in Cadiz Bay (Southern Spain). Journal of Applied Phycology 32(3): 1879-1891. <https://doi.org/10.1007/s10811-020-02090-8>

Bulboa C, K Véliz, F Sáez, C Sepúlveda, L Vega & J Macchiavello. 2013. A new method for cultivation of the carragenophyte and edible red seaweed Chondracanthus chamissoi based on secondary attachment disc: Development in outdoor tanks. Aquaculture 410/411: 86-94. <https://doi.org/10.1016/j.aquaculture.2013.06.018>

Bulboa C, IP Massad, L Contreras-Porcia, J Zapata, F Castañeda, ME Ramírez & P Gil-Kodaka. 2020. Concise review of genus Chondracanthus (Rhodophyta: Gigartinales). Journal of Applied Phycology 32(2): 773-785. <https://doi.org/10.1007/s10811-019-01956-w>

Calderón M, MH Ramírez & D Bustamante. 2010. Notas sobre tres especies de Gigartinaceae (Rhodophyta) del litoral peruano. Revista Peruana de Biología 17(1): 115-121.

Castañeda M, S Arbaiza, F Diaz, Y Castillo, P Baltazar & O Advíncula. 2018. Evaluación del fotoperiodo en el asentamiento de tetraesporas de Chondracanthus chamissoi sobre cuerdas de polipropileno en condiciones semi-controladas de laboratorio. Anales Científicos 79(2): 459-465. <https://doi.org/10.21704/ac.v79i2.1256>

Claeys H, S De Bodt & D Inzé. 2014. Gibberellins and DELLAs: central nodes in growth regulatory networks. Trends in Plant Science 19(4): 231-239.

Clement JA, SG Martin, R Porter, TM Butt & A Beckett. 1993. Germination and the role of extracellular matrix in adhesion of urediniospores of Uromyces viciae-fabae to synthetic surfaces. Mycological Research 97(5): 585-593.

Gutiérrez R, R Núñez, L Quintana, O Valdés, K González, M Rodríguez, Y Hernández & E Ortiz. 2017. Optimization of the extraction process of phenolic compounds from the brown algae Sargassum fluitans Børgesen (Børgesen). Biotecnología Aplicada 34(3): 3301-3304.

Hughes MH. 2019. Reproducción a partir de esporas de Gigartina skottsbergii y Sarcothalia crispata (Rhodophyta) de la Patagonia argentina y aplicación farmacéutica de sus carragenanos. Tesis Doctoral, Universidad Nacional del Sur, Bahía Blanca, 134 pp. <https://repositoriodigital.uns.edu.ar/handle/123456789/4520>

Korzen L, A Abelson & A Israel. 2016. Growth, protein and carbohydrate contents in Ulva rigida and Gracilaria bursa-pastoris integrated with an offshore fish farm. Journal of Applied Phycology 28: 1835-1845.

Li Y, Y Tao, Q Wang, Q Gong & X Gao. 2023. Effects of organic carbon source and pH on growth, astaxanthin accumulation and endogenous phytohormone secretion of Haematococcus pluvialis. Journal of Applied Phycology 35(6): 2815-2828.

Limoli D H, CJ Jones & DJ Wozniak. 2015. Bacterial extracellular polysaccharides in biofilm formation and function. Microbiology Spectrum 3, 10.1128. <https://doi.org/10.1128/microbiolspec.mb-0011-2014>

Macchiavello JC, C Bulboa, K Sepulveda, F Véliz, L Saez, L Vega & R Véliz. 2012. Manual de cultivo de Chondracanthus chamissoi (Chicorea de Mar), 47 pp. Proyecto HUAM FONDEF, Universidad Católica del Norte, Coquimbo. <https://sembrandoelmar.cl/web/wp-content/uploads/2021/02/Manual_chicoria_UCN.pdf>

Montoya V, A Meynard, L Contreras-Porcia & CB Contador. 2020. Molecular identification, growth, and reproduction of Colaconema daviesii (Rhodophyta; Colaconematales) endophyte of the edible red seaweed Chondracanthus chamissoi. Journal of Applied Phycology 32(5): 3533-3542. <https://doi.org/10.1007/s10811-020-02176-3>

Oyarzo S, M Ávila, P Alvear, J Remonsellez, L Contreras-Porcia & C Bulboa. 2021. Secondary attachment disc of edible seaweed Chondracanthus chamissoi (Rhodophyta, Gigartinales): Establishment of permanent thalli stock. Aquaculture 530, 735954. <https://doi.org/10.1016/J.AQUACULTURE.2020.735954>

Park W K, G Yoo, M Moon, CW Kim, YE Choi & JW Yang. 2013. Phytohormone supplementation significantly increases growth of Chlamydomonas reinhardtii cultivated for biodiesel production. Applied Biochemistry and Biotechnology 171: 1128-1142.

Spagnuolo D, V Russo, A Manghisi, A Di Martino, M Morabito, G Genovese & P Trifilò. 2022. Screening on the presence of plant growth regulators in high biomass forming seaweeds from the Ionian Sea (Mediterranean Sea). Sustainability 14(7), 3914. <https://doi.org/10.3390/su14073914>

Stirk WA & J van Staden. 2010. Flow of cytokinins through the environment. Plant Growth Regulation 62(2): 101-116. <https://doi.org/10.1007/s10725-010-9481-x>

Sun D, E Rahman, S Sun, X Sun & N Xu. 2023. Effects of polyamines on the early development of cystocarps, spore release, survival, and germination rate of Gracilariopsis lemaneiformis. Journal of Oceanology and Limnology 41(3): 1133-1144.

Thomas J B E, FS Ramos & F Gröndahl. 2019. Identifying suitable sites for macroalgae cultivation on the Swedish West Coast. Coastal Management 47(1): 88-106.

Uji T & H Mizuta. 2022. The role of plant hormones on the reproductive success of red and brown algae. Frontiers in Plant Science 13, 1019334. <https://doi.org/10.3389/fpls.2022.1019334>

Vásquez JA & JM Alonso-Vega. 2001. Chondracanthus chamissoi (Rhodophyta, Gigartinales) in northern Chile: ecological aspects for management of wild populations. Journal of Applied Phycology 13: 267-277.

Vilcanqui Y, L Mamani-Apaza, M Flores, J Ortiz-Viedma, N Romero, M Mariotti-Celis & N Huamán-Castilla. 2021. Chemical characterization of brown and red seaweed from southern Peru, a sustainable source of bioactive and nutraceutical compounds. Agronomy 11(89), 1669. <https://doi.org/10.3390/agronomy11081669>

Wang C, M Qi, J Guo, C Zhou, X Yan, R Ruan & P Cheng. 2021. The active phytohormone in microalgae: the characteristics, efficient detection, and their adversity resistance applications. Molecules 27(1), 46. <https://doi.org/10.3390/molecules27010046>

Xiao Y, F Yi, J Ling, G Yang, N Lu, Z Jia, J Wang K Zao, J Wang & W Ma. 2020. Genome-wide analysis of lncRNA and mRNA expression and endogenous hormone regulation during tension wood formation in Catalpa bungei. BMC genomics 21, 609. <https://doi.org/10.1186/s12864-020-07044-5>

Yang MY, EC Macaya & MS Kim. 2015. Molecular evidence for verifying the distribution of Chondracanthus chamissoi and C. teedei (Gigartinaceae, Rhodophyta). Botanica Marina 58(2): 103-113. <10.1515/bot-2015-0011>

Yokoya NS, M Ávila, MI Piel, F Villanueva & A Alcapan. 2014. Effects of plant growth regulators on growth and morphogenesis in tissue culture of Chondracanthus chamissoi (Gigartinales, Rhodophyta). Journal of Applied Phycology 26(2): 819-823. <https://doi.org/10.1007/s10811-013-0130-4>

Yuan H, L Zhao, W Guo, Y Yu, L Tao, L Zhang, X Song, W Huang, L Cheng, J Chen, F Guan, G Wu & H Li. 2019. Exogenous application of phytohormones promotes growth and regulates expression of wood formation-related genes in Populus simonii x P. nigra. International Journal of Molecular Sciences 20(3), 792.

Žižková E, M Kubeš, PI Dobrev, P Přibyl, J Šimura, L Zahajská, L Záveská, O Novák & V Motyka. 2017. Control of cytokinin and auxin homeostasis in cyanobacteria and algae. Annals of Botany 119(1): 151-166.

Downloads

Published

2025-12-01

Issue

Section

Research Note

Similar Articles

1-10 of 35

You may also start an advanced similarity search for this article.