Local feeding behavioural responses to food availability of the amphipod Orchestoidea tuberculata

Autores/as

DOI:

https://doi.org/10.22370/rbmo.2025.60.1.5489

Palabras clave:

Talitrid amphipod, sandy beach, food preference, stranded algae, Pacific Ocean

Resumen

The main food sources in sandy beaches are stranded animals and seaweeds. In species with low dispersal potential or reduced mobility, it is expected that local adaptations or plastic responses arise to confront these environments and maximize fitness. Orchestoidea tuberculata is a common semi-terrestrial talitrid amphipod in Chilean sandy beaches and shows a very limited dispersal, with direct developmental mode and reduced mobility at the adult stage. O. tuberculata feeds on stranded seaweeds and organic material from animal origin during low tides. The effects of different diets on food preference, growth rate and survival of O. tuberculata individuals from two sandy beaches with different types of food availability were evaluated: Punta Hualpén with high abundances of stranded seaweed and animals, and Lenga showing low levels of stranded seaweeds, and high levels of food of animal origin. To evaluate potential local responses in feeding behavior, individuals of O. tuberculata from both localities were fed with algae (Durvillaea incurvata) and animal carcasses (Emerita analoga) disposed in separate and mixed diets (D. incurvata + E. analoga). Results showed that food preference in O. tuberculata varies between individuals from the two sites. Individuals tended to show the highest performances with the diet composed of the most common dietary item available in their site of origin (algal or animal). These results may indicate the existence of potential local adaptations or feeding behavior plasticity in O. tuberculata as responses to the spatial variability of food availability observed in sandy beach ecosystems.

Descargas

Los datos de descarga aún no están disponibles.

Biografía del autor/a

  • Antonio Brante, Universidad Católica de la Santísima Concepción

    Corresponding author: abrante@ucsc.cl

Referencias

Armengol L, A Calbet, G Franchy, A Rodríguez-Santos & S Hernández-León. 2019. Planktonic food web structure and trophic transfer efficiency along a productivity gradient in the tropical and subtropical Atlantic Ocean. Scientific Reports 9, 2044. <https://doi.org/10.1038/s41598-019-38507-9>

Baessolo L, J Pérez, A Arriagada, C Suazo & M Castro. 2010. Nuevos registros de Orchestoidea tuberculata Nicolet 1849 (Amphipoda, Talitridae), en la costa de Chile. Hidrobiológica 20: 191-193.

Bell TM & EE Sotka. 2012. Local adaptation in adult feeding preference and juvenile performance in the generalist herbivore Idotea balthica. Oecologia 170: 383-393.

Benítez S, C Duarte, J López, PH Manríquez, JM Navarro, CC Bonta, R Torres & PA Quijón. 2016. Ontogenic variability in the feeding behaviour of a marine amphipod in response to ocean acidification. Marine Pollution Bulletin 6: 375-379.

Bergamino L, D Lercari & O Defeo. 2011. Food web structure of sandy beaches: Temporal and spatial variation using stable isotope analysis. Estuarine Coastal and Shelf Science 91: 536-543.

Buza-Jacobucci J, G Pereira-Leite & F Pedini. 2014. The role of epiphytic algae and different species of Sargassum in the distribution and feeding of herbivorous amphipods. Latin American Journal of Aquatic Research 42: 353-363.

Claudino MC, ALM Pessanha, FG Araújo & AM Garcia. 2015. Trophic connectivity and basal food sources sustaining tropical aquatic consumers along a mangrove to ocean gradient. Estuarine Coastal and Shelf Science 167: 45-55.

Cruz-Rivera E & ME Hay. 2000a. The effects of diet mixing on consumer fitness: macroalgae, epiphytes, and animal matter as food for marine amphipods. Oecologia 123: 252-264.

Cruz-Rivera E & ME Hay. 2000b. Can quantity replace quality? Food choice, compensatory feeding, and fitness of marine mesograzers. Ecology 81: 201-219.

Cruz-Rivera E & ME Hay. 2001. Macroalgal traits and the feeding and fitness of an herbivorous amphipod: the roles of selectivity, mixing, and compensation. Marine Ecology Progress Series 218: 249-266.

Duarte C, E Jaramillo & H Contreras. 2008. Macroalgas varadas sobre la superficie de una playa arenosa del sur de Chile: preferencias alimentarias y de hábitat de juveniles y adultos de Orchestoidea tuberculata (Nicolet), (Amphipoda, Talitridae). Revista Chilena de Historia Natural 81: 69-81.

Duarte C, E Jaramillo, H Contreras, K Acuña & JM Navarro. 2009. Importancia del subsidio de macroalgas sobre la abundancia y biología poblacional del anfípodo Orchestoidea tuberculata (Nicolet) en playas arenosas del centro sur de Chile. Revista de Biología Marina y Oceanografía 44: 691-702.

Duarte C, E Jaramillo, H Contreras & K Acuña. 2010a. Cannibalism and food availability in the talitrid amphipod Orchestoidea tuberculata. Journal of Sea Research 64: 417-421.

Duarte C, JM Navarro, K Acuña & I Gómez. 2010b. Feeding preferences of the sandhopper Orchestoidea tuberculata: the importance of algal traits. Hydrobiologia 651: 291-303.

Duarte C, K Acuña, JM Navarro & I Gómez. 2011. Intra-plant differences in seaweed nutritional quality and chemical defenses: importance for the feeding behaviour of the intertidal amphipod Orchestoidea tuberculata. Journal of Sea Research 66: 215-221.

Duarte C, K Acuña, JM Navarro, I Gómez, E Jaramillo & P Quijón. 2014. Variable feeding behavior in Orchestoidea tuberculata (Nicolet 1849): Exploring the relative importance of macroalgal traits. Journal of Sea Research 87: 1-7.

Dufey R. 2007. Abundancia de Orchestoidea tuberculata (Nicolet, 1849) (Amphipoda: Talitridae) en relación con la abundancia de materia orgánica en playas de arena de la VIII región, Chile. Tesis de Biólogo Marino, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, 49 pp.

Dugan JE, DM Hubbard, MD McCrary & M Pierson. 2003. The response of macrofauna communities and shorebirds to macrophyte wrack subsidies on exposed sandy beaches of southern California. Estuarine, Coastal and Shelf Science 58: 25-40.

Erasmus JH, PA Cook & VE Coyne. 1997. The role of bacteria in the digestion of seaweed by the abalone Haliotis midae. Aquaculture 155: 377-386.

Guerra-García JM, JM Tierno de Figueroa, C Navarro-Barranco, M Ros, JE Sánchez-Moyano & J Moreira. 2014. Dietary analysis of the marine Amphipoda (Crustacea: Peracarida) from the Iberian Peninsula. Journal of Sea Research 85: 508-517.

Hermosilla C. 2007. Efecto de la materia orgánica animal y vegetal, sobre la conducta de escape de Orchestoidea tuberculata (Amphipoda; Talitridae). Tesis de Biólogo Marino, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, 47 pp.

Incera M, M Lastra & J López. 2006. Effect of swash climate and food availability on sandy beach macrofauna along the NW coast of the Iberian Peninsula. Marine Ecology Progress Series 314: 25-33.

López S, Y Díaz, K Noris & A Cabrera. 2010. Lípidos en el anfípodo Talorchestia margaritae (Amphipoda: Talitridae) y su relación con la ecología de la especie. Revista de Biología Tropical 58: 841-855.

Mann KH. 1998. Production and use of detritus in various freshwater, estuarine and coastal marine ecosystems. Limnology and Oceanography 33: 910-930.

Montecinos C, C Álvarez, R Riera & A Brante. 2021. Inbreeding vs. outbreeding depression in a marine species with low dispersal potential. Marine Ecology 42(1), e12635. <https://doi.org/10.1111/maec.12635>

Navarro-Barranco C, JM Tierno de Figueroa, JM Guerra-García, L Sánchez-Tocino & JC García-Gómez. 2013. Feeding habits of amphipods (Crustacea: Malacostraca) from shallow soft bottom communities: Comparison between marine caves and open habitats. Journal of Sea Research 78: 1-7.

Ocampo J. 2014. Preferencia alimentaria en diferentes estados ontogénicos (juveniles y adultos) de Orchestoidea tuberculata (Nicolet, 1874) (Amphipoda: Talitridae) y el efecto sobre su crecimiento y reproducción. Tesis de Biólogo Marino, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, 58 pp.

Pearson TH & R Rosenberg. 1987. Feast and famine: Structuring factors in marine benthic communities. In: Gee JHS & PS Giller (eds). Organization of communities past and present, pp. 373-395. Blackwell Scientific, Oxford.

Pérez-Schultheiss J. 2010. Análisis morfológico de poblaciones de Orchestoidea tuberculata Nicolet, 1849 (Crustacea: Amphipoda: Talitridae) del sur de Chile. Boletín de Biodiversidad de Chile 2: 21-40.

Rezende M, H Grande & G Buzá. 2013. Habitat and food selection by herbivorous amphipods associated with macroalgal beds on the southeast coast of Brazil. Nauplius 21: 9-15.

Sawabe T, N Setoguchi, S Inoue, R Tanaka, M Ootsubo, M Yoshimizu & Y Ezura. 2003. Acetic acid production of Vibrio halioticoli from alginate: a possible role for establishment of abalone-V. halioticoli association. Aquaculture 219: 671-679.

Schlacher TA & J Hartwig. 2013. Bottom-up control in the benthos of ocean-exposed sandy beaches? Austral Ecology 38: 177-189.

Schlacher TA, BM Hutton, BL Gilby, N Porch, GS Maguire, B Maslo, RM Connolly, AD Olds & MA Weston. 2017. Algal subsidies enhance invertebrate prey for threatened shorebirds: A novel conservation tool on ocean beaches? Estuarine Coastal and Shelf Science 191: 28-38.

Stachowicz JJ & ME Hay. 1996. Facultative mutualism between an herbivorous crab and a coralline alga: advantages of eating noxious seaweeds. Oecologia 105: 377-387.

Veloso VG, IA Sallorenzo, WA Barros & GN de Souza. 2012. Analysis of feeding behavior and food consumption rate of Atlantorchestoidea brasiliensis (Crustacea: Talitridae). Ciencias Marinas 38: 653-664.

Descargas

Publicado

2025-12-01

Número

Sección

Nota Científica

Artículos similares

1-10 de 98

También puede Iniciar una búsqueda de similitud avanzada para este artículo.

Artículos más leídos del mismo autor/a